pool_op.h 13.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18 19
#include <string>
#include <vector>
20

Y
Yi Wang 已提交
21 22 23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
25
#if defined(__HIPCC__) || defined(__NVCC__)
26
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
27 28
#endif

29 30 31 32
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
33 34 35 36 37 38

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
39 40 41 42

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
43 44 45

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
46
      const framework::OpKernelType& expected_kernel_type) const override;
47 48 49 50 51 52 53
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
54 55 56 57

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
58 59 60 61

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
62 63 64 65
};

class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
66
  void Make() override;
67 68 69 70
};

class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
71
  void Make() override;
72
};
73 74 75

template <typename T = int>
inline void UpdatePadding(std::vector<T>* paddings, const bool global_pooling,
76 77 78
                          const bool adaptive,
                          const std::string padding_algorithm,
                          const framework::DDim data_dims,
79 80
                          const std::vector<T>& strides,
                          const std::vector<T>& ksize) {
81
  // set padding size == data_dims.size() * 2
82
  auto data_shape = framework::vectorize<T>(data_dims);
83 84
  if (static_cast<int>(paddings->size()) == data_dims.size()) {
    for (int i = 0; i < data_dims.size(); ++i) {
85
      T copy_pad = *(paddings->begin() + 2 * i);
86 87 88
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
89 90 91 92 93
    PADDLE_ENFORCE_EQ(data_dims.size() * 2, paddings->size(),
                      platform::errors::InvalidArgument(
                          "Paddings size %d should be the same or twice as the "
                          "pooling size %d.",
                          paddings->size(), data_dims.size() * 2));
94 95
  }

96
  // when padding_algorithm is "VALID" or "SAME"
97
  if (padding_algorithm == "SAME") {
98
    for (int i = 0; i < data_dims.size(); ++i) {
99 100
      T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
      T pad_sum =
101 102
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i],
                   static_cast<T>(0));
103 104
      T pad_0 = pad_sum / 2;
      T pad_1 = pad_sum - pad_0;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;
    }
  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }

  // if global_pooling == true or adaptive == true, padding will be ignore
  if (global_pooling || adaptive) {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

122 123
template <typename T = int>
inline void UpdateKsize(std::vector<T>* ksize,
124 125 126
                        const framework::DDim data_dims) {
  ksize->resize(static_cast<size_t>(data_dims.size()));
  for (size_t i = 0; i < ksize->size(); ++i) {
127
    *(ksize->begin() + i) = static_cast<T>(data_dims[i]);
128 129
  }
}
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
inline int getReduceNum(const framework::Tensor& input,
                        const framework::Tensor* output,
                        const std::string data_format,
                        std::vector<int>* reduce_dim) {
  // data_format only can be NCHW
  bool channel_last = (data_format == "NHWC");
  if (channel_last) {
    return 0;
  }
  int reduce_num = 0;
  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  if ((output_height == 1) && (output_width == 1)) {
    reduce_dim->push_back(2);
    reduce_dim->push_back(3);
    reduce_num = input.dims()[2] * input.dims()[3];
  }
  return reduce_num;
}

Q
QI JUN 已提交
151
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
152
class PoolKernel : public framework::OpKernel<T> {
153 154
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
155
    const Tensor* in_x = context.Input<Tensor>("X");
156
    Tensor* out = context.Output<Tensor>("Out");
157

C
chengduoZH 已提交
158
    std::string pooling_type = context.Attr<std::string>("pooling_type");
159 160 161
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
162
    std::string data_format = context.Attr<std::string>("data_format");
163
    bool exclusive = context.Attr<bool>("exclusive");
164
    bool adaptive = context.Attr<bool>("adaptive");
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }

    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
182 183
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
184
        paddings.erase(paddings.begin() + i + 1);
185 186
      }
    }
187 188 189 190

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }
Q
QI JUN 已提交
191
    auto& dev_ctx = context.template device_context<DeviceContext>();
192 193 194
    switch (ksize.size()) {
      case 2: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
195
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
196
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
197
              pool2d_forward;
198
          paddle::operators::math::MaxPool<T> pool_process;
199
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
200
                         true, false, out, pool_process);
201

C
chengduoZH 已提交
202
        } else if (pooling_type == "avg") {
203 204 205 206
          std::vector<int> reduce_dim;
          int reduce_num = getReduceNum(*in_x, out, data_format, &reduce_dim);
          if (reduce_num > 0 &&
              adaptive) {  // for adaptive_avg_pool2d && output_size == 1
207
#if defined(__HIPCC__) || defined(__NVCC__)
208
            auto stream = dev_ctx.stream();
209
            TensorReduceImpl<T, T, kps::AddFunctor, kps::DivideFunctor<T>>(
W
Wilber 已提交
210 211
                dev_ctx, *in_x, out, kps::DivideFunctor<T>(reduce_num),
                reduce_dim, stream);
212 213 214 215 216 217
#else  // for cpu
            paddle::operators::math::Pool2dFunctor<
                DeviceContext, paddle::operators::math::AvgPool<T>, T>
                pool2d_forward;
            paddle::operators::math::AvgPool<T> pool_process;
            pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings,
218
                           data_format, exclusive, adaptive, out, pool_process);
219 220 221 222 223 224 225
#endif
          } else {  // avgpool_2d or  adaptive_avg_pool2d && output_size != 1
            paddle::operators::math::Pool2dFunctor<
                DeviceContext, paddle::operators::math::AvgPool<T>, T>
                pool2d_forward;
            paddle::operators::math::AvgPool<T> pool_process;
            pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings,
226
                           data_format, exclusive, adaptive, out, pool_process);
227
          }
228 229 230 231
        }
      } break;
      case 3: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
232
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
233
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
234
              pool3d_forward;
235
          paddle::operators::math::MaxPool<T> pool_process;
236
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
237
                         true, false, out, pool_process);
238

C
chengduoZH 已提交
239
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
240
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
241
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
242
              pool3d_forward;
243
          paddle::operators::math::AvgPool<T> pool_process;
244
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
245
                         exclusive, adaptive, out, pool_process);
246 247
        }
      } break;
248 249 250 251
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Pool op only supports 2D and 3D input."));
      }
252 253 254 255
    }
  }
};

Q
QI JUN 已提交
256
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
257
class PoolGradKernel : public framework::OpKernel<T> {
258 259
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
260
    const Tensor* in_x = context.Input<Tensor>("X");
261 262 263
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
264
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
265

C
chengduoZH 已提交
266
    std::string pooling_type = context.Attr<std::string>("pooling_type");
267 268 269
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
270
    bool exclusive = context.Attr<bool>("exclusive");
271
    bool adaptive = context.Attr<bool>("adaptive");
272 273 274 275 276 277
    std::string data_format = context.Attr<std::string>("data_format");
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
278

279 280 281 282 283 284 285 286 287 288
    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
289 290
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
291
        paddings.erase(paddings.begin() + i + 1);
C
fix bug  
chengduoZH 已提交
292
      }
293
    }
294 295 296 297 298

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

Q
QI JUN 已提交
299
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
300 301
    if (in_x_grad) {
      in_x_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
302
      paddle::operators::math::SetConstant<DeviceContext, T> set_constant;
303
      set_constant(dev_ctx, in_x_grad, static_cast<T>(0.0));
304 305 306 307

      switch (ksize.size()) {
        case 2: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
308
            paddle::operators::math::MaxPool2dGradFunctor<DeviceContext, T>
309
                pool2d_backward;
Q
QI JUN 已提交
310
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
311
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
312
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
313
            paddle::operators::math::Pool2dGradFunctor<
Q
QI JUN 已提交
314
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
315
                pool2d_backward;
316
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
317
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
318 319
                            paddings, data_format, exclusive, adaptive,
                            in_x_grad, pool_process);
320 321 322 323
          }
        } break;
        case 3: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
324
            paddle::operators::math::MaxPool3dGradFunctor<DeviceContext, T>
325
                pool3d_backward;
Q
QI JUN 已提交
326
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
327
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
328
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
329
            paddle::operators::math::Pool3dGradFunctor<
Q
QI JUN 已提交
330
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
331
                pool3d_backward;
332
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
333
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
334 335
                            paddings, data_format, exclusive, adaptive,
                            in_x_grad, pool_process);
336 337
          }
        } break;
338 339 340 341
        default: {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Pool op only supports 2D and 3D input."));
        }
342 343 344 345 346
      }
    }
  }
};

347 348 349 350 351 352 353 354 355 356 357 358 359 360
template <typename DeviceContext, typename T>
class PoolGradGradKernel : public PoolKernel<DeviceContext, T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    if (pooling_type == "max") {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Pool op grad grad only supports avgpool."));
    } else {
      PoolKernel<DeviceContext, T>::Compute(context);
    }
  }
};

361 362
}  // namespace operators
}  // namespace paddle