vit_attention_fuse_pass.cc 5.4 KB
Newer Older
F
feng_shuai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/vit_attention_fuse_pass.h"

#include <string>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"

#define GET_IR_NODE(node__) GET_IR_NODE_FROM_SUBGRAPH(node__, node__, pattern);
#define GET_NODES                 \
  GET_IR_NODE(matmul0_op);        \
  GET_IR_NODE(matmul0_in_y);      \
  GET_IR_NODE(matmul0_out);       \
  GET_IR_NODE(elementwise0_op);   \
  GET_IR_NODE(elementwise0_in_y); \
  GET_IR_NODE(elementwise0_out);  \
  GET_IR_NODE(reshape1_op);       \
  GET_IR_NODE(reshape1_out);      \
  GET_IR_NODE(transpose1_op);     \
  GET_IR_NODE(transpose1_out);    \
  GET_IR_NODE(slice1_op);         \
  GET_IR_NODE(slice1_out);        \
  GET_IR_NODE(slice2_op);         \
  GET_IR_NODE(slice2_out);        \
  GET_IR_NODE(slice3_op);         \
  GET_IR_NODE(slice3_out);        \
  GET_IR_NODE(matmul1_op);        \
  GET_IR_NODE(matmul1_out);       \
  GET_IR_NODE(scale1_op);         \
  GET_IR_NODE(scale1_out);        \
  GET_IR_NODE(transpose2_op);     \
  GET_IR_NODE(transpose2_out);    \
  GET_IR_NODE(softmax1_op);       \
  GET_IR_NODE(softmax1_out);      \
  GET_IR_NODE(matmul2_op);        \
  GET_IR_NODE(matmul2_out);       \
  GET_IR_NODE(transpose3_op);     \
  GET_IR_NODE(transpose3_out);    \
  GET_IR_NODE(reshape2_op);       \
  GET_IR_NODE(reshape2_out);

namespace paddle {
namespace framework {
namespace ir {

void VitAttentionFusePass::ApplyImpl(ir::Graph* graph) const {
  GraphPatternDetector gpd;
  const std::string pattern_name = "vit_attention_fuse";
  FusePassBase::Init(pattern_name, graph);
  auto* scope = param_scope();

  // pattern
  std::unordered_set<std::string> matmul_ops{"matmul", "matmul_v2"};
  PDNode* x = gpd.mutable_pattern()
                  ->NewNode("x")
                  ->assert_is_ops_input(matmul_ops, "X")
                  ->AsInput();
  patterns::VitAttention pattern(gpd.mutable_pattern(), pattern_name);
  pattern(x);

  int fusion_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    GET_NODES;
    // do something;
    OpDesc desc(matmul0_op->Op()->Block());
    desc.SetType("multihead_matmul");
    desc.SetInput("Input", {subgraph.at(x)->Name()});
    // refactor W and Bias
    auto* w_tensor =
        scope->FindVar(matmul0_in_y->Name())->GetMutable<LoDTensor>();
    auto w_dims =
        phi::make_ddim({w_tensor->dims()[0], 3, w_tensor->dims()[1] / 3});
    w_tensor->Resize(w_dims);

    auto* b_tensor =
        scope->FindVar(elementwise0_in_y->Name())->GetMutable<LoDTensor>();
    auto bias_dims = phi::make_ddim({3, b_tensor->dims()[0] / 3});
    b_tensor->Resize(bias_dims);

    desc.SetInput("W", {matmul0_in_y->Name()});
    desc.SetInput("Bias", {elementwise0_in_y->Name()});
    std::vector<int64_t> shape = softmax1_out->Var()->GetShape();
    desc.SetOutput("Out", {reshape2_out->Name()});
    desc.SetAttr("head_number", static_cast<int>(shape[1]));
    float alpha = PADDLE_GET_CONST(float, scale1_op->Op()->GetAttr("scale"));
    desc.SetAttr("alpha", alpha);

    // Create a new node for the fused op.
    auto vit_attention_node = graph->CreateOpNode(&desc);

    // Link inputs and outputs.
    PADDLE_ENFORCE_NE(
        subgraph.count(x),
        0,
        platform::errors::NotFound("Detector did not find input x of conv2d."));

    IR_NODE_LINK_TO(subgraph.at(x), vit_attention_node);  // Input
    IR_NODE_LINK_TO(matmul0_in_y, vit_attention_node);
    IR_NODE_LINK_TO(elementwise0_in_y, vit_attention_node);
    IR_NODE_LINK_TO(vit_attention_node, reshape2_out);  // Output

    // Delete the unneeded nodes.
    std::unordered_set<const Node*> marked_nodes(
        {matmul0_op,    matmul0_out,    elementwise0_op, elementwise0_out,
         reshape1_op,   reshape1_out,   transpose1_op,   transpose1_out,
         slice1_op,     slice1_out,     slice2_op,       slice2_out,
         slice3_op,     slice3_out,     matmul1_op,      matmul1_out,
         scale1_op,     scale1_out,     transpose2_op,   transpose2_out,
         softmax1_op,   softmax1_out,   matmul2_op,      matmul2_out,
         transpose3_op, transpose3_out, reshape2_op});

    GraphSafeRemoveNodes(graph, marked_nodes);
    ++fusion_count;
  };
  gpd(graph, handler);
  AddStatis(fusion_count);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(vit_attention_fuse_pass,
              paddle::framework::ir::VitAttentionFusePass);
REGISTER_PASS_CAPABILITY(vit_attention_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .GE("reshape2", 0)
            .GE("transpose2", 0)
            .GE("slice", 0)
            .GE("scale", 0)
            .GE("softmax", 0)
            .GE("matmul_v2", 0));