jit_kernel_exp.cc 14.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <cmath>  // for exp
T
tensor-tang 已提交
17 18
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
19 20 21 22 23

#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

28 29 30 31
#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
32 33 34 35 36 37
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit = platform::jit;

T
tensor-tang 已提交
38 39 40 41 42 43 44 45
// TODO(TJ): move refer codes to one file
template <typename T>
void VExpRefer(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
}

T
tensor-tang 已提交
46 47
template <typename T>
void VSigmoidRefer(const T* x, T* y, int n) {
T
tensor-tang 已提交
48
  // y = 1 / (1 + e^-x)
T
tensor-tang 已提交
49 50 51 52 53 54 55 56
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-tmp));
  }
}

T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65 66 67 68
template <typename T>
void VTanhRefer(const T* x, T* y, int n) {
  // y = 2 * sigmoid(2x) - 1
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * x[i];
  }
  VSigmoidRefer(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
  }
}

T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VExpMKL(const T* x, T* y, int n);

template <>
void VExpMKL<float>(const float* x, float* y, int n) {
  platform::dynload::vsExp(n, x, y);
}

template <>
void VExpMKL<double>(const double* x, double* y, int n) {
  platform::dynload::vdExp(n, x, y);
}
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95

template <typename T>
void VSigmoidMKL(const T* x, T* y, int n) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  VExpMKL(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
  }
}
T
tensor-tang 已提交
96 97 98 99 100 101 102 103 104 105 106

template <typename T>
void VTanhMKL(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * x[i];
  }
  VSigmoidMKL(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
  }
}
T
tensor-tang 已提交
107 108
#endif

T
tensor-tang 已提交
109
/* VExp JitKernel */
T
tensor-tang 已提交
110
template <typename T>
T
tensor-tang 已提交
111 112
class VExpKernelImpl : public VExpKernel<T> {
 public:
T
tensor-tang 已提交
113 114 115 116 117 118
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VExpKernelImpl(int d) : VExpKernel<T>() {
    this->num_ = d;  // TODO(TJ): remove me when ComputeDeprecated done
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;  // should change
119 120
      jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::exp,
                                          sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
121 122 123 124 125 126 127 128
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VExpMKL<T>;
      return;
T
tensor-tang 已提交
129
    }
T
tensor-tang 已提交
130 131 132 133 134
#endif
    this->Compute = VExpRefer<T>;
  }
  void ComputeDeprecated(const T* x, T* y) const override {
    VExpRefer(x, y, this->num_);
T
tensor-tang 已提交
135
  }
T
tensor-tang 已提交
136 137 138
#ifdef PADDLE_WITH_XBYAK

 private:
139
  std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
140
#endif
T
tensor-tang 已提交
141 142
};

T
tensor-tang 已提交
143 144 145
#ifdef PADDLE_WITH_XBYAK
template <>
bool VExpKernelImpl<float>::useJIT(int d) {
146
  return gen::VActJitCode::init(d, gen::operand_type::exp);
T
tensor-tang 已提交
147 148 149
}
#endif

T
tensor-tang 已提交
150
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
151 152 153 154
template <>
bool VExpKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
155

T
tensor-tang 已提交
156 157 158 159
template <>
bool VExpKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172

#endif

/* VSigmoid JitKernel */
template <typename T>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
 public:
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
    this->num_ = d;  // TODO(TJ): remove me when ComputeDeprecated done
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;  // should change
173 174
      jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::sigmoid,
                                          sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif

#ifdef PADDLE_WITH_MKLML
    // strictly it's a better impl with MKL, then is refer
    if (useMKL(d)) {
      this->Compute = VSigmoidMKL<T>;
      return;
    }
#endif
    this->Compute = VSigmoidRefer<T>;
  }
  void ComputeDeprecated(const T* x, T* y) const override {
    VSigmoidRefer(x, y, this->num_);
  }
#ifdef PADDLE_WITH_XBYAK

 private:
195
  std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
196 197 198 199 200 201
#endif
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VSigmoidKernelImpl<float>::useJIT(int d) {
202
  return gen::VActJitCode::init(d, gen::operand_type::sigmoid);
T
tensor-tang 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215
}
#endif

#ifdef PADDLE_WITH_MKLML
template <>
bool VSigmoidKernelImpl<float>::useMKL(int d) {
  return d > 512;
}

template <>
bool VSigmoidKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
216 217
#endif

T
tensor-tang 已提交
218 219 220 221 222 223 224 225 226 227
/* VTanh JitKernel */
template <typename T>
class VTanhKernelImpl : public VTanhKernel<T> {
 public:
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VTanhKernelImpl(int d) : VTanhKernel<T>() {
    this->num_ = d;  // TODO(TJ): remove me when ComputeDeprecated done
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;  // should change
228 229
      jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::tanh,
                                          sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif

#ifdef PADDLE_WITH_MKLML
    // strictly it's a better impl with MKL, then is refer
    if (useMKL(d)) {
      this->Compute = VTanhMKL<T>;
      return;
    }
#endif
    this->Compute = VTanhRefer<T>;
  }
  void ComputeDeprecated(const T* x, T* y) const override {
    VTanhRefer(x, y, this->num_);
  }
#ifdef PADDLE_WITH_XBYAK

 private:
250
  std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
251 252 253 254 255 256
#endif
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VTanhKernelImpl<float>::useJIT(int d) {
257
  return gen::VActJitCode::init(d, gen::operand_type::tanh);
T
tensor-tang 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
}
#endif

#ifdef PADDLE_WITH_MKLML
template <>
bool VTanhKernelImpl<float>::useMKL(int d) {
  return d > 512;
}

template <>
bool VTanhKernelImpl<double>::useMKL(int d) {
  return true;
}
#endif

T
tensor-tang 已提交
273
REGISTER_JITKERNEL(vexp, VExpKernel);
T
tensor-tang 已提交
274
REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel);
T
tensor-tang 已提交
275
REGISTER_JITKERNEL(vtanh, VTanhKernel);
276

T
tensor-tang 已提交
277
namespace detail {
278 279 280 281

#define ALIGN32 __attribute__((aligned(32)))

#define _PS256_CONST(Name, Val)                                      \
282
  static const float _ps256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
283 284 285
                                                 Val, Val, Val, Val}

#define _PI256_CONST(Name, Val)                                    \
286
  static const int _pi256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
                                               Val, Val, Val, Val}

_PI256_CONST(0x7f, 0x7f);
_PS256_CONST(one, 1.f);
_PS256_CONST(0p5, 0.5f);
_PS256_CONST(exp_hi, 88.3762626647949f);
_PS256_CONST(exp_lo, -88.3762626647949f);
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);

typedef union imm_xmm_union {
  __m256i imm;
  __m128i xmm[2];
} imm_xmm_union;

#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
  {                                         \
311
    imm_xmm_union u ALIGN32;                \
312 313 314 315 316 317 318
    u.imm = imm_;                           \
    xmm0_ = u.xmm[0];                       \
    xmm1_ = u.xmm[1];                       \
  }

#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
  {                                         \
319
    imm_xmm_union u ALIGN32;                \
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    u.xmm[0] = xmm0_;                       \
    u.xmm[1] = xmm1_;                       \
    imm_ = u.imm;                           \
  }

#define AVX2_BITOP_USING_SSE2(fn)                           \
  static inline __m256i avx2_mm256_##fn(__m256i x, int y) { \
    /* use SSE2 to perform the bitop AVX2 */                \
    __m128i x1, x2;                                         \
    __m256i ret;                                            \
    COPY_IMM_TO_XMM(x, x1, x2);                             \
    x1 = _mm_##fn(x1, y);                                   \
    x2 = _mm_##fn(x2, y);                                   \
    COPY_XMM_TO_IMM(x1, x2, ret);                           \
    return ret;                                             \
  }

#define AVX2_INTOP_USING_SSE2(fn)                                    \
  static inline __m256i avx2_mm256_add_epi32(__m256i x, __m256i y) { \
    /* use SSE2 to perform the AVX2 integer operation */             \
    __m128i x1, x2;                                                  \
    __m128i y1, y2;                                                  \
    __m256i ret;                                                     \
    COPY_IMM_TO_XMM(x, x1, x2);                                      \
    COPY_IMM_TO_XMM(y, y1, y2);                                      \
    x1 = _mm_##fn(x1, y1);                                           \
    x2 = _mm_##fn(x2, y2);                                           \
    COPY_XMM_TO_IMM(x1, x2, ret);                                    \
    return ret;                                                      \
  }

AVX2_BITOP_USING_SSE2(slli_epi32);
AVX2_INTOP_USING_SSE2(add_epi32);

T
tensor-tang 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#define AVXEXP_BASE                                                            \
  __m256 tmp = _mm256_setzero_ps(), fx;                                        \
  __m256 one = *reinterpret_cast<const __m256*>(_ps256_one);                   \
  __m256i imm0;                                                                \
  x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi));       \
  x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo));       \
  /* express exp(x) as exp(g + n*log(2)) */                                    \
  fx = _mm256_mul_ps(x,                                                        \
                     *reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF));  \
  fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5));        \
  tmp = _mm256_floor_ps(fx);                                                   \
  /* if greater, substract 1 */                                                \
  __m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);                            \
  mask = _mm256_and_ps(mask, one);                                             \
  fx = _mm256_sub_ps(tmp, mask);                                               \
  tmp = _mm256_mul_ps(fx,                                                      \
                      *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1)); \
  __m256 z = _mm256_mul_ps(                                                    \
      fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2));             \
  x = _mm256_sub_ps(x, tmp);                                                   \
  x = _mm256_sub_ps(x, z);                                                     \
  z = _mm256_mul_ps(x, x);                                                     \
  __m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0);           \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5));   \
  y = _mm256_mul_ps(y, z);                                                     \
  y = _mm256_add_ps(y, x);                                                     \
  y = _mm256_add_ps(y, one);                                                   \
  /* build 2^n */                                                              \
  imm0 = _mm256_cvttps_epi32(fx)

398
__m256 ExpAVX(__m256 x) {
T
tensor-tang 已提交
399
  AVXEXP_BASE;
400 401 402 403 404 405 406 407 408 409 410
  // two AVX2 instructions using SSE2
  imm0 = avx2_mm256_add_epi32(imm0,
                              *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = avx2_mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}

#ifdef __AVX2__
__m256 ExpAVX2(__m256 x) {
T
tensor-tang 已提交
411
  AVXEXP_BASE;
412 413 414 415 416 417 418 419 420 421
  // two AVX2 instructions
  imm0 = _mm256_add_epi32(imm0, *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = _mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
#endif

}  // namespace detail
T
tensor-tang 已提交
422 423 424 425
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle