leaky_relu_op.cc 5.8 KB
Newer Older
H
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

// LeakyRelu converter from fluid to tensorRT
class LeakyReluOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(4) << "convert fluid leaky_relu op to tensorrt layer";

    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
30 31 32 33 34 35
    size_t input_num = op_desc.Input("X").size();
    PADDLE_ENFORCE_EQ(input_num, 1UL,
                      platform::errors::InvalidArgument(
                          "Invalid number of TRT leaky_relu op converter "
                          "inputs. Expected 1, but received %d",
                          input_num));
H
hjchen2 已提交
36 37 38
    auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
    // Get output
    size_t output_num = op_desc.Output("Out").size();
39 40 41 42 43
    PADDLE_ENFORCE_EQ(output_num, 1UL,
                      platform::errors::InvalidArgument(
                          "Invalid number of TRT leaky_relu op converter "
                          "outputs. Expected 1, but received %d",
                          output_num));
H
hjchen2 已提交
44 45
    // Get attrs
    float alpha = boost::get<float>(op_desc.GetAttr("alpha"));
46
    nvinfer1::ILayer* output_layer = nullptr;
H
hjchen2 已提交
47

48 49 50 51 52
#if IS_TRT_VERSION_GE(5100)
    nvinfer1::IActivationLayer* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Activation, *input, nvinfer1::ActivationType::kLEAKY_RELU);
    layer->setAlpha(alpha);
    output_layer = layer;
53 54 55 56 57 58 59

    bool enable_int8 = boost::get<bool>(op_desc.HasAttr("enable_int8"));
    if (enable_int8) {
      CHECK(op_desc.HasAttr("X_scale"));
      float in_scale = boost::get<float>(op_desc.GetAttr("X_scale"));
      engine_->SetTensorDynamicRange(input, in_scale);
    }
60
#else
H
hjchen2 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    platform::CPUPlace place;
    std::unique_ptr<framework::LoDTensor> alpha_tensor(
        new framework::LoDTensor());
    alpha_tensor->Resize(framework::make_ddim({2}));
    float* alpha_data = alpha_tensor->mutable_data<float>(place);
    alpha_data[0] = alpha;
    alpha_data[1] = 1.f - alpha;
    // the leaky relu formula y = (x > 0) ? x : alpha * x is equal to
    // y = alpha * x + (x > 0) ? (1 - alpha) * x : 0
    TensorRTEngine::Weight scale{nvinfer1::DataType::kFLOAT, &alpha_data[0], 1};
    TensorRTEngine::Weight shift{nvinfer1::DataType::kFLOAT, nullptr, 0};
    TensorRTEngine::Weight power{nvinfer1::DataType::kFLOAT, nullptr, 0};
    // y_scale = alpha * x
    auto* scale_layer = TRT_ENGINE_ADD_LAYER(
        engine_, Scale, *input, nvinfer1::ScaleMode::kUNIFORM, shift.get(),
        scale.get(), power.get());
77 78 79 80
    PADDLE_ENFORCE_NOT_NULL(
        scale_layer, platform::errors::InvalidArgument(
                         "Invalid scale layer in leaky_relu TRT op converter. "
                         "The scale layer should not be null."));
H
hjchen2 已提交
81 82 83
    // y_relu = (x > 0) : x : 0
    auto* relu_layer = TRT_ENGINE_ADD_LAYER(engine_, Activation, *input,
                                            nvinfer1::ActivationType::kRELU);
84 85 86 87
    PADDLE_ENFORCE_NOT_NULL(
        relu_layer, platform::errors::InvalidArgument(
                        "Invalid relu layer in leaky_relu TRT op converter. "
                        "The relu layer should not be null."));
H
hjchen2 已提交
88 89 90 91 92 93 94
    //
    TensorRTEngine::Weight sub_scale{nvinfer1::DataType::kFLOAT, &alpha_data[1],
                                     1};
    auto* scale_relu_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Scale, *(relu_layer->getOutput(0)),
                             nvinfer1::ScaleMode::kUNIFORM, shift.get(),
                             sub_scale.get(), power.get());
95 96 97 98 99
    PADDLE_ENFORCE_NOT_NULL(
        scale_relu_layer,
        platform::errors::InvalidArgument(
            "Invalid scale_relu layer in leaky_relu TRT op converter. The "
            "scale_relu layer should not be null."));
100
    output_layer =
H
hjchen2 已提交
101 102 103
        TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *(scale_layer->getOutput(0)),
                             *(scale_relu_layer->getOutput(0)),
                             nvinfer1::ElementWiseOperation::kSUM);
104 105 106 107
    PADDLE_ENFORCE_NOT_NULL(
        output_layer, platform::errors::InvalidArgument(
                          "Invalid output layer in leaky_relu TRT op "
                          "converter. The output layer should not be null."));
H
hjchen2 已提交
108
    // keep alpha tensor to avoid release it's memory
H
hjchen2 已提交
109
    std::string alpha_name = op_desc.Output("Out")[0] + "_alpha";
110 111 112 113 114 115 116 117
    bool alpha_not_in_weight_map =
        (engine_->weight_map.find(alpha_name) == engine_->weight_map.end());
    PADDLE_ENFORCE_EQ(alpha_not_in_weight_map, true,
                      platform::errors::InvalidArgument(
                          "The name of parameter alpha in leaky_relu TRT op "
                          "converter is already "
                          "found in the weight map. The same weight cannot be "
                          "set twice. Please check if it is already set."));
118
    engine_->SetWeights(alpha_name, std::move(alpha_tensor));
119
#endif
H
hjchen2 已提交
120
    auto output_name = op_desc.Output("Out")[0];
121 122
    RreplenishLayerAndOutput(output_layer, "leaky_relu", {output_name},
                             test_mode);
H
hjchen2 已提交
123 124 125 126 127 128 129 130
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(leaky_relu, LeakyReluOpConverter);