vol2col.cc 11.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/vol2col.h"
A
Abhinav Arora 已提交
16
#include <vector>
C
chengduoZH 已提交
17 18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {
namespace math {

/*
 * vol = [input_channels, input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
Q
QI JUN 已提交
29
class Vol2ColFunctor<platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
30
 public:
Q
QI JUN 已提交
31
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
32 33 34
                  const framework::Tensor& vol,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
35 36
                  const std::vector<int>& paddings, framework::Tensor* col,
                  const DataLayout data_layout) const {
37 38 39 40 41 42 43 44 45
    PADDLE_ENFORCE_EQ(vol.dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimension of vol should be 4, but received %d.",
                          vol.dims().size()));

    PADDLE_ENFORCE_EQ(col->dims().size(), 7,
                      platform::errors::InvalidArgument(
                          "The dimension of col should be 7, but received %d.",
                          col->dims().size()));
46 47

    int input_channels =
48
        (data_layout != DataLayout::kNHWC ? vol.dims()[0] : vol.dims()[3]);
49
    int input_depth =
50
        (data_layout != DataLayout::kNHWC ? vol.dims()[1] : vol.dims()[0]);
51
    int input_height =
52
        (data_layout != DataLayout::kNHWC ? vol.dims()[2] : vol.dims()[1]);
53
    int input_width =
54
        (data_layout != DataLayout::kNHWC ? vol.dims()[3] : vol.dims()[2]);
C
chengduoZH 已提交
55 56 57 58 59 60
    int filter_depth = col->dims()[1];
    int filter_height = col->dims()[2];
    int filter_width = col->dims()[3];
    int output_depth = col->dims()[4];
    int output_height = col->dims()[5];
    int output_width = col->dims()[6];
C
chengduoZH 已提交
61 62 63
    int channels_col =
        input_channels * filter_depth * filter_height * filter_width;

L
liym27 已提交
64 65 66 67 68 69 70 71
    // changed
    bool paddings_size_is_6 = (paddings.size() == 6);
    int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
    int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
    int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
    int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
    int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
    int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                            ((dilations[0] * (filter_depth - 1) + 1))) /
                               strides[0] +
                           1;
    PADDLE_ENFORCE_EQ(
        input_depth_tmp, output_depth,
        platform::errors::InvalidArgument(
            "input_depth(%d) and output_depth(%d) are mismatching.",
            input_depth_tmp, output_depth));
    auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                             ((dilations[1] * (filter_height - 1) + 1))) /
                                strides[1] +
                            1;
    PADDLE_ENFORCE_EQ(
        input_height_tmp, output_height,
        platform::errors::InvalidArgument(
            "input_height(%d) and output_height(%d) are mismatching.",
            input_height_tmp, output_height));
    auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                            ((dilations[2] * (filter_width - 1) + 1))) /
                               strides[2] +
                           1;
    PADDLE_ENFORCE_EQ(
        input_width_tmp, output_width,
        platform::errors::InvalidArgument(
            "input_width(%d) and output_width(%d) are mismatching.",
            input_width_tmp, output_width));
C
chengduoZH 已提交
100
    const T* vol_data = vol.data<T>();
C
chengduoZH 已提交
101
    T* col_data = col->data<T>();
C
chengduoZH 已提交
102 103 104 105 106 107 108

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int d_offset = (c / filter_width / filter_height) % filter_depth;
      int c_in = c / filter_width / filter_height / filter_depth;
      for (int d = 0; d < output_depth; ++d) {
L
liym27 已提交
109
        int d_pad = d * strides[0] - pad_d_forth + d_offset * dilations[0];
C
chengduoZH 已提交
110
        for (int h = 0; h < output_height; ++h) {
L
liym27 已提交
111
          int h_pad = h * strides[1] - pad_h_up + h_offset * dilations[1];
C
chengduoZH 已提交
112
          for (int w = 0; w < output_width; ++w) {
L
liym27 已提交
113
            int w_pad = w * strides[2] - pad_w_left + w_offset * dilations[2];
C
chengduoZH 已提交
114 115 116

            int col_idx =
                ((c * output_depth + d) * output_height + h) * output_width + w;
117
            int vol_idx;
118
            if (data_layout != DataLayout::kNHWC) {
119 120 121 122 123 124 125 126
              vol_idx = ((c_in * input_depth + d_pad) * input_height + h_pad) *
                            input_width +
                        w_pad;
            } else {
              vol_idx = ((d_pad * input_height + h_pad) * input_width + w_pad) *
                            input_channels +
                        c_in;
            }
C
chengduoZH 已提交
127 128 129 130 131
            col_data[col_idx] =
                (h_pad < 0 || h_pad >= input_height || w_pad < 0 ||
                 w_pad >= input_width || d_pad < 0 || d_pad >= input_depth)
                    ? static_cast<T>(0)
                    : vol_data[vol_idx];
C
chengduoZH 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
          }
        }
      }
    }
  }
};

/*
 * vol = [input_channels,input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
Q
QI JUN 已提交
146
class Col2VolFunctor<platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
147
 public:
Q
QI JUN 已提交
148
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
149 150 151
                  const framework::Tensor& col,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
152 153
                  const std::vector<int>& paddings, framework::Tensor* vol,
                  const DataLayout data_layout) const {
154 155 156 157 158 159 160 161 162
    PADDLE_ENFORCE_EQ(vol->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimension of vol should be 4, but received %d.",
                          vol->dims().size()));

    PADDLE_ENFORCE_EQ(col.dims().size(), 7,
                      platform::errors::InvalidArgument(
                          "The dimension of col  should be 7, but received %d.",
                          col.dims().size()));
163 164

    int input_channels =
165
        (data_layout != DataLayout::kNHWC ? vol->dims()[0] : vol->dims()[3]);
166
    int input_depth =
167
        (data_layout != DataLayout::kNHWC ? vol->dims()[1] : vol->dims()[0]);
168
    int input_height =
169
        (data_layout != DataLayout::kNHWC ? vol->dims()[2] : vol->dims()[1]);
170
    int input_width =
171
        (data_layout != DataLayout::kNHWC ? vol->dims()[3] : vol->dims()[2]);
C
chengduoZH 已提交
172 173 174 175 176 177 178 179 180
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];
    int channels_col =
        input_channels * filter_depth * filter_height * filter_width;

L
liym27 已提交
181 182 183 184 185 186 187 188
    bool paddings_size_is_6 = (paddings.size() == 6);
    int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
    int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
    int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
    int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
    int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
    int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];

189 190 191 192
    auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                            ((dilations[0] * (filter_depth - 1) + 1))) /
                               strides[0] +
                           1;
193 194 195 196 197
    PADDLE_ENFORCE_EQ(
        input_depth_tmp, output_depth,
        platform::errors::InvalidArgument(
            "input_depth(%d) and output_depth(%d) are mismatching.",
            input_depth_tmp, output_depth));
198 199 200 201
    auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                             ((dilations[1] * (filter_height - 1) + 1))) /
                                strides[1] +
                            1;
202 203 204 205 206
    PADDLE_ENFORCE_EQ(
        input_height_tmp, output_height,
        platform::errors::InvalidArgument(
            "input_height(%d) and output_height(%d) are mismatching.",
            input_height_tmp, output_height));
207 208 209 210
    auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                            ((dilations[2] * (filter_width - 1) + 1))) /
                               strides[2] +
                           1;
211 212 213 214 215
    PADDLE_ENFORCE_EQ(
        input_width_tmp, output_width,
        platform::errors::InvalidArgument(
            "input_width(%d)  and output_width(%d) are mismatching.",
            input_width_tmp, output_width));
C
chengduoZH 已提交
216
    T* vol_data = vol->data<T>();
C
chengduoZH 已提交
217 218 219 220 221 222 223 224
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int d_offset = (c / filter_width / filter_height) % filter_depth;
      int cIm = c / filter_width / filter_height / filter_depth;
      for (int d = 0; d < output_depth; ++d) {
L
liym27 已提交
225
        int d_pad = d * strides[0] - pad_d_forth + d_offset * dilations[0];
C
chengduoZH 已提交
226
        for (int h = 0; h < output_height; ++h) {
L
liym27 已提交
227
          int h_pad = h * strides[1] - pad_h_up + h_offset * dilations[1];
C
chengduoZH 已提交
228
          for (int w = 0; w < output_width; ++w) {
L
liym27 已提交
229
            int w_pad = w * strides[2] - pad_w_left + w_offset * dilations[2];
C
chengduoZH 已提交
230 231 232

            if (h_pad >= 0 && h_pad < input_height && w_pad >= 0 &&
                w_pad < input_width && d_pad >= 0 && d_pad < input_depth) {
233
              int vol_idx;
234
              if (data_layout != DataLayout::kNHWC) {
235 236 237 238 239 240 241 242 243
                vol_idx = ((cIm * input_depth + d_pad) * input_height + h_pad) *
                              input_width +
                          w_pad;
              } else {
                vol_idx =
                    ((d_pad * input_height + h_pad) * input_width + w_pad) *
                        input_channels +
                    cIm;
              }
C
chengduoZH 已提交
244 245 246 247 248 249 250 251 252 253 254 255
              int col_idx =
                  ((c * output_depth + d) * output_height + h) * output_width +
                  w;
              vol_data[vol_idx] += col_data[col_idx];
            }
          }
        }
      }
    }
  }
};

Q
QI JUN 已提交
256 257 258 259
template class Vol2ColFunctor<platform::CPUDeviceContext, float>;
template class Vol2ColFunctor<platform::CPUDeviceContext, double>;
template class Col2VolFunctor<platform::CPUDeviceContext, float>;
template class Col2VolFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
260 261 262 263

}  // namespace math
}  // namespace operators
}  // namespace paddle