io_utils.cc 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/utils/io_utils.h"
16 17 18 19 20 21 22

#include <fcntl.h>

#include <utility>

#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/text_format.h"
23
#include "paddle/fluid/inference/analysis/helper.h"
24
#include "paddle/fluid/inference/utils/shape_range_info.pb.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

namespace paddle {
namespace inference {

// =========================================================
//       Item        |        Type       |      Bytes
// ---------------------------------------------------------
//      Version      |      uint32_t     |        4
// ---------------------------------------------------------
//   Bytes of `Name` |      uint64_t     |        8
//        Name       |        char       |  Bytes of `Name`
// ---------------------------------------------------------
//      LoD Level    |      uint64_t     |        8
//  Bytes of `LoD[0]`|      uint64_t     |        8
//       LoD[0]      |      uint64_t     | Bytes of `LoD[0]`
//        ...        |         ...       |       ...
// ---------------------------------------------------------
//   Dims of `Shape` |      uint64_t     |        8
//       Shape       |      uint64_t     |    Dims * 4
// ---------------------------------------------------------
//       Dtype       |       int32_t     |        4
//  Bytes of `Data`  |      uint64_t     |        8
//        Data       |        Dtype      |  Bytes of `Data`
// =========================================================
void SerializePDTensorToStream(std::ostream *os, const PaddleTensor &tensor) {
  // 1. Version
  os->write(reinterpret_cast<const char *>(&kCurPDTensorVersion),
            sizeof(kCurPDTensorVersion));
  // 2. Name
  uint64_t name_bytes = tensor.name.size();
  os->write(reinterpret_cast<char *>(&name_bytes), sizeof(name_bytes));
  os->write(tensor.name.c_str(), name_bytes);
  // 3. LoD
  auto lod = tensor.lod;
  uint64_t lod_size = lod.size();
  os->write(reinterpret_cast<const char *>(&lod_size), sizeof(lod_size));
  for (auto &each : lod) {
    auto size = each.size() * sizeof(size_t);
    os->write(reinterpret_cast<const char *>(&size), sizeof(size));
    os->write(reinterpret_cast<const char *>(each.data()),
              static_cast<std::streamsize>(size));
  }
  // 4. Shape
  size_t dims = tensor.shape.size();
  os->write(reinterpret_cast<const char *>(&dims), sizeof(dims));
  os->write(reinterpret_cast<const char *>(tensor.shape.data()),
            sizeof(int) * dims);
  // 5. Data
  os->write(reinterpret_cast<const char *>(&tensor.dtype),
            sizeof(tensor.dtype));
  uint64_t length = tensor.data.length();
  os->write(reinterpret_cast<const char *>(&length), sizeof(size_t));
  os->write(reinterpret_cast<const char *>(tensor.data.data()), length);
}

void DeserializePDTensorToStream(std::istream &is, PaddleTensor *tensor) {
  // 1. Version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  // 2. Name
  uint64_t name_bytes;
  is.read(reinterpret_cast<char *>(&name_bytes), sizeof(name_bytes));
  std::vector<char> bytes(name_bytes);
  is.read(bytes.data(), name_bytes);
  tensor->name = std::string(bytes.data(), name_bytes);
  // 3. LoD
  uint64_t lod_level;
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto *lod = &(tensor->lod);
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    (*lod)[i] = tmp;
  }
  // 4. Shape
  size_t dims;
  is.read(reinterpret_cast<char *>(&dims), sizeof(dims));
  tensor->shape.resize(dims);
  is.read(reinterpret_cast<char *>(tensor->shape.data()), sizeof(int) * dims);
  // 5. Data
  uint64_t length;
  is.read(reinterpret_cast<char *>(&tensor->dtype), sizeof(tensor->dtype));
  is.read(reinterpret_cast<char *>(&length), sizeof(length));
  tensor->data.Resize(length);
  is.read(reinterpret_cast<char *>(tensor->data.data()), length);
}

// =========================================================
//       Item        |        Type       |      Bytes
// ---------------------------------------------------------
//      Version      |      uint32_t     |        4
// ---------------------------------------------------------
//   Size of Tensors |      uint64_t     |        8
//      Tensors      |        ----       |       ---
// ---------------------------------------------------------
void SerializePDTensorsToStream(std::ostream *os,
                                const std::vector<PaddleTensor> &tensors) {
  // 1. Version
  os->write(reinterpret_cast<const char *>(&kCurPDTensorVersion),
            sizeof(kCurPDTensorVersion));
  // 2. Tensors
  uint64_t num = tensors.size();
  os->write(reinterpret_cast<char *>(&num), sizeof(num));
  for (const auto &tensor : tensors) {
    SerializePDTensorToStream(os, tensor);
  }
}

void DeserializePDTensorsToStream(std::istream &is,
                                  std::vector<PaddleTensor> *tensors) {
  // 1. Version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  // 2. Tensors
  uint64_t num;
  is.read(reinterpret_cast<char *>(&num), sizeof(num));
  tensors->resize(num);
  for (auto &tensor : *tensors) {
    DeserializePDTensorToStream(is, &tensor);
  }
}

void SerializePDTensorsToFile(const std::string &path,
                              const std::vector<PaddleTensor> &tensors) {
  std::ofstream fout(path, std::ios::binary);
  SerializePDTensorsToStream(&fout, tensors);
  fout.close();
}

void DeserializePDTensorsToFile(const std::string &path,
                                std::vector<PaddleTensor> *tensors) {
  bool is_present = analysis::FileExists(path);
161
  PADDLE_ENFORCE_EQ(
162 163
      is_present,
      true,
164
      platform::errors::InvalidArgument("Cannot open %s to read", path));
165 166 167 168 169
  std::ifstream fin(path, std::ios::binary);
  DeserializePDTensorsToStream(fin, tensors);
  fin.close();
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
void SerializeShapeRangeInfo(
    const std::string &path,
    const paddle::inference::proto::ShapeRangeInfos &info) {
  int out_fd = open(path.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644);
  google::protobuf::io::FileOutputStream *os =
      new google::protobuf::io::FileOutputStream(out_fd);
  google::protobuf::TextFormat::Print(info, os);
  delete os;
  close(out_fd);
}

void SerializeShapeRangeInfo(
    const std::string &path,
    const std::map<std::string, std::vector<int32_t>> &min_shape,
    const std::map<std::string, std::vector<int32_t>> &max_shape,
185 186 187 188
    const std::map<std::string, std::vector<int32_t>> &opt_shape,
    const std::map<std::string, std::vector<int32_t>> &min_value,
    const std::map<std::string, std::vector<int32_t>> &max_value,
    const std::map<std::string, std::vector<int32_t>> &opt_value) {
189 190 191 192 193 194 195 196 197
  paddle::inference::proto::ShapeRangeInfos shape_range_infos;
  for (auto it : min_shape) {
    auto *s = shape_range_infos.add_shape_range_info();
    s->set_name(it.first);
    for (size_t i = 0; i < it.second.size(); ++i) {
      s->add_min_shape(it.second[i]);
      s->add_max_shape(max_shape.at(it.first)[i]);
      s->add_opt_shape(opt_shape.at(it.first)[i]);
    }
198 199 200 201 202 203 204 205
    // If it.first is a shape tensor, we should collect values from it.
    if (min_value.count(it.first)) {
      for (size_t i = 0; i < min_value.at(it.first).size(); ++i) {
        s->add_min_value(min_value.at(it.first)[i]);
        s->add_max_value(max_value.at(it.first)[i]);
        s->add_opt_value(opt_value.at(it.first)[i]);
      }
    }
206 207 208
  }
  inference::SerializeShapeRangeInfo(path, shape_range_infos);
}
209

210 211 212
void DeserializeShapeRangeInfo(
    const std::string &path, paddle::inference::proto::ShapeRangeInfos *info) {
  int fd = open(path.c_str(), O_RDONLY);
W
Wilber 已提交
213 214 215
  if (fd == -1) {
    PADDLE_THROW(platform::errors::NotFound("File [%s] is not found.", path));
  }
216 217 218 219 220 221 222 223 224 225 226
  google::protobuf::io::FileInputStream *is =
      new google::protobuf::io::FileInputStream(fd);
  google::protobuf::TextFormat::Parse(is, info);
  delete is;
  close(fd);
}

void DeserializeShapeRangeInfo(
    const std::string &path,
    std::map<std::string, std::vector<int32_t>> *min_shape,
    std::map<std::string, std::vector<int32_t>> *max_shape,
227 228 229 230
    std::map<std::string, std::vector<int32_t>> *opt_shape,
    std::map<std::string, std::vector<int32_t>> *min_value,
    std::map<std::string, std::vector<int32_t>> *max_value,
    std::map<std::string, std::vector<int32_t>> *opt_value) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  paddle::inference::proto::ShapeRangeInfos shape_range_infos;
  DeserializeShapeRangeInfo(path, &shape_range_infos);
  for (int i = 0; i < shape_range_infos.shape_range_info_size(); ++i) {
    auto info = shape_range_infos.shape_range_info(i);
    auto name = info.name();
    if (min_shape->count(name) || max_shape->count(name) ||
        opt_shape->count(name)) {
      continue;
    } else {
      std::vector<int32_t> tmp(info.min_shape_size());
      for (size_t k = 0; k < tmp.size(); ++k) tmp[k] = info.min_shape(k);
      min_shape->insert(std::make_pair(name, tmp));

      tmp.resize(info.max_shape_size());
      for (size_t k = 0; k < tmp.size(); ++k) tmp[k] = info.max_shape(k);
      max_shape->insert(std::make_pair(name, tmp));

      tmp.resize(info.opt_shape_size());
      for (size_t k = 0; k < tmp.size(); ++k) tmp[k] = info.opt_shape(k);
      opt_shape->insert(std::make_pair(name, tmp));
    }
  }
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  for (int i = 0; i < shape_range_infos.shape_range_info_size(); ++i) {
    auto info = shape_range_infos.shape_range_info(i);
    auto name = info.name();
    if (min_value->count(name) || max_value->count(name) ||
        opt_value->count(name)) {
      continue;
    } else {
      std::vector<int32_t> tmp(info.min_value_size());
      for (size_t k = 0; k < tmp.size(); ++k) tmp[k] = info.min_value(k);
      min_value->insert(std::make_pair(name, tmp));

      tmp.resize(info.max_value_size());
      for (size_t k = 0; k < tmp.size(); ++k) tmp[k] = info.max_value(k);
      max_value->insert(std::make_pair(name, tmp));

      tmp.resize(info.opt_value_size());
      for (size_t k = 0; k < tmp.size(); ++k) tmp[k] = info.opt_value(k);
      opt_value->insert(std::make_pair(name, tmp));
    }
  }
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
}

void UpdateShapeRangeInfo(
    const std::string &path,
    const std::map<std::string, std::vector<int32_t>> &min_shape,
    const std::map<std::string, std::vector<int32_t>> &max_shape,
    const std::map<std::string, std::vector<int32_t>> &opt_shape,
    const std::vector<std::string> &names) {
  paddle::inference::proto::ShapeRangeInfos shape_range_infos;
  DeserializeShapeRangeInfo(path, &shape_range_infos);

  for (int i = 0; i < shape_range_infos.shape_range_info_size(); ++i) {
    auto *info = shape_range_infos.mutable_shape_range_info(i);
    for (const auto &name : names) {
      if (info->name() == name) {
        info->clear_min_shape();
        info->clear_max_shape();
        info->clear_opt_shape();
        for (size_t j = 0; j < min_shape.at(name).size(); ++j)
          info->add_min_shape(min_shape.at(name)[j]);
        for (size_t j = 0; j < max_shape.at(name).size(); ++j)
          info->add_max_shape(max_shape.at(name)[j]);
        for (size_t j = 0; j < opt_shape.at(name).size(); ++j)
          info->add_opt_shape(opt_shape.at(name)[j]);
        break;
      }
    }
  }
301

302 303 304
  inference::SerializeShapeRangeInfo(path, shape_range_infos);
}

305 306
}  // namespace inference
}  // namespace paddle