unary_grad_kernel.cc 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sparse/unary_grad_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/kernels/activation_grad_kernel.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"

#define DEFINE_SPARSE_UNARY_GRAD_KERNEL(DenseKernelFunc)                    \
  namespace phi {                                                           \
  namespace sparse {                                                        \
                                                                            \
  template <typename T, typename Context>                                   \
  void SparseCoo##DenseKernelFunc(const Context& dev_ctx,                   \
                                  const SparseCooTensor& x_or_out,          \
                                  const SparseCooTensor& out_grad,          \
                                  SparseCooTensor* x_grad) {                \
    DenseTensor non_zero_indices =                                          \
        phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_indices());   \
    DenseTensor non_zero_elements =                                         \
        phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_elements());  \
    phi::Copy(dev_ctx,                                                      \
              x_or_out.non_zero_indices(),                                  \
              dev_ctx.GetPlace(),                                           \
              false,                                                        \
              &non_zero_indices);                                           \
    phi::DenseKernelFunc<T, Context>(dev_ctx,                               \
                                     x_or_out.non_zero_elements(),          \
                                     out_grad.non_zero_elements(),          \
                                     &non_zero_elements);                   \
    x_grad->SetMember(                                                      \
        non_zero_indices, non_zero_elements, x_or_out.dims(), true);        \
  }                                                                         \
                                                                            \
  template <typename T, typename Context>                                   \
  void SparseCsr##DenseKernelFunc(const Context& dev_ctx,                   \
                                  const SparseCsrTensor& x_or_out,          \
                                  const SparseCsrTensor& out_grad,          \
                                  SparseCsrTensor* out) {                   \
    DenseTensor non_zero_crows =                                            \
        phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_crows());     \
    DenseTensor non_zero_cols =                                             \
        phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_cols());      \
    DenseTensor non_zero_elements =                                         \
        phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_elements());  \
    phi::Copy(dev_ctx,                                                      \
              x_or_out.non_zero_crows(),                                    \
              dev_ctx.GetPlace(),                                           \
              false,                                                        \
              &non_zero_crows);                                             \
    phi::Copy(dev_ctx,                                                      \
              x_or_out.non_zero_cols(),                                     \
              dev_ctx.GetPlace(),                                           \
              false,                                                        \
              &non_zero_cols);                                              \
    phi::DenseKernelFunc<T, Context>(dev_ctx,                               \
                                     x_or_out.non_zero_elements(),          \
                                     out_grad.non_zero_elements(),          \
                                     &non_zero_elements);                   \
    out->SetMember(                                                         \
        non_zero_crows, non_zero_cols, non_zero_elements, x_or_out.dims()); \
  }                                                                         \
  }                                                                         \
  }

#define REGISTER_CPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
  PD_REGISTER_KERNEL(sparse_coo_##kernel_name,                         \
                     CPU,                                              \
                     ALL_LAYOUT,                                       \
                     phi::sparse::SparseCoo##DenseKernelFunc,          \
                     float,                                            \
                     double) {                                         \
    kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);     \
  }                                                                    \
  PD_REGISTER_KERNEL(sparse_csr_##kernel_name,                         \
                     CPU,                                              \
                     ALL_LAYOUT,                                       \
                     phi::sparse::SparseCsr##DenseKernelFunc,          \
                     float,                                            \
                     double) {                                         \
    kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);     \
  }

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#define REGISTER_GPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
  PD_REGISTER_KERNEL(sparse_coo_##kernel_name,                         \
                     GPU,                                              \
                     ALL_LAYOUT,                                       \
                     phi::sparse::SparseCoo##DenseKernelFunc,          \
                     float,                                            \
                     double,                                           \
                     phi::dtype::float16) {                            \
    kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);     \
  }                                                                    \
                                                                       \
  PD_REGISTER_KERNEL(sparse_csr_##kernel_name,                         \
                     GPU,                                              \
                     ALL_LAYOUT,                                       \
                     phi::sparse::SparseCsr##DenseKernelFunc,          \
                     float,                                            \
                     double,                                           \
                     phi::dtype::float16) {                            \
    kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);     \
  }
#else
// This macro definition is empty when GPU is disabled
#define REGISTER_GPU_SPARSE_UNARY_KERNEL(sparse_kernel_name, DenseKernelFunc)
#endif

#define REGISTER_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
  REGISTER_CPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc)   \
  REGISTER_GPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc)

#define DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL(kernel_name,     \
                                                     DenseKernelFunc) \
  DEFINE_SPARSE_UNARY_GRAD_KERNEL(DenseKernelFunc)                    \
  REGISTER_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc)

// NOTE: the following code is to bypass the restriction of Paddle
// kernel registration mechanism. Do NOT refactor them unless you
// know what you are doing.
// If you want to implement any new kernel, please follow `sin_grad`,
// `tanh_grad` etc, do NOT follow the following `relu_grad`.
DEFINE_SPARSE_UNARY_GRAD_KERNEL(ReluGradKernel)

PD_REGISTER_KERNEL(sparse_coo_relu_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooReluGradKernel,
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
PD_REGISTER_KERNEL(sparse_csr_relu_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCsrReluGradKernel,
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(sparse_coo_relu_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooReluGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(sparse_csr_relu_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCsrReluGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}
#endif

DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL(sin_grad, SinGradKernel)
DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL(sqrt_grad, SqrtGradKernel)
DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL(tanh_grad, TanhGradKernel)