sum_op.cu 9.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zhaoyuchen2018 已提交
11 12

#include <paddle/fluid/platform/device_context.h>
13

Z
zhaoyuchen2018 已提交
14
#include "paddle/fluid/framework/op_registry.h"
15
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/sum_op.h"
C
chengduo 已提交
17
#include "paddle/fluid/platform/float16.h"
18

Z
zhaoyuchen2018 已提交
19 20 21 22 23 24 25 26 27 28
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))

using LoDTensor = framework::LoDTensor;

template <class T>
29 30 31
__global__ void Sum2CUDAKernel(const T *in_0,
                               const T *in_1,
                               T *out,
Z
zhaoyuchen2018 已提交
32 33 34 35 36 37 38 39 40
                               int64_t N) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    out[id] = in_0[id] + in_1[id];
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
41 42
__global__ void SumArrayCUDAKernel(
    T **in, T *out, int64_t N, size_t in_size, bool read_dst) {
Z
zhaoyuchen2018 已提交
43 44
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
45
    T total(read_dst ? out[id] : static_cast<T>(0));
Z
zhaoyuchen2018 已提交
46 47 48 49 50 51
    for (int i = 0; i < in_size; ++i) {
      const T *tmp = in[i];
      if (tmp) {
        total += tmp[id];
      }
    }
52
    out[id] = total;
Z
zhaoyuchen2018 已提交
53 54 55 56 57
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
58 59
__global__ void SumSelectedRowsCUDAKernel(T **sr_in_out,
                                          int64_t N,
Z
zhaoyuchen2018 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
                                          size_t rows) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    for (int i = 0; i < 2 * rows; i += 2) {
      const T *tmp = sr_in_out[i];
      T *tmp_out = sr_in_out[i + 1];
      if (tmp && tmp_out) {
        tmp_out[id] += tmp[id];
      }
    }
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
75
void SumToLoDTensor(const framework::ExecutionContext &context) {
Z
zhaoyuchen2018 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  auto in_vars = context.MultiInputVar("X");
  const size_t in_num = in_vars.size();

  constexpr size_t theory_sm_threads = 1024;
  auto &dev_ctx =
      context.template device_context<platform::CUDADeviceContext>();
  auto stream = dev_ctx.stream();

  auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
  auto sm_count = max_threads / theory_sm_threads;
  size_t tile_size = 0;
  dim3 grids;
  dim3 blocks;

  auto ComputeKernelParameter = [&](size_t length) {
    if (length >= max_threads)
      tile_size = 1024;
    else if (length < max_threads && length > sm_count * 128)
      tile_size = 512;
    else if (length <= sm_count * 128)
      tile_size = 256;
    grids = dim3(CEIL_DIV(length, tile_size), 1, 1);
    blocks = dim3(tile_size, 1, 1);
  };

  auto *out = context.Output<LoDTensor>("Out");
102
  bool in_place = in_vars[0] == context.OutputVar("Out");
103

Z
zhaoyuchen2018 已提交
104
  if (!in_place) {
105 106 107 108 109 110 111
    auto *out_ptr = out->mutable_data<T>(context.GetPlace());
    if (in_num >= 1 && in_vars[0]->IsType<framework::LoDTensor>()) {
      auto &in_0_tensor = in_vars[0]->Get<framework::LoDTensor>();
      if (in_0_tensor.numel() > 0) {
        in_place = (in_0_tensor.data<T>() == out_ptr);
      }
    }
Z
zhaoyuchen2018 已提交
112 113
  }

114 115 116 117 118
  // Sum of two tensors
  if (in_num == 2 && in_vars[0]->IsType<framework::LoDTensor>() &&
      in_vars[1]->IsType<framework::LoDTensor>()) {
    auto &in_0 = in_vars[0]->Get<framework::LoDTensor>();
    auto &in_1 = in_vars[1]->Get<framework::LoDTensor>();
119 120 121
    int64_t length_0 = in_0.numel();
    int64_t length_1 = in_1.numel();
    if (length_0 && length_1 && in_0.IsInitialized() && in_1.IsInitialized()) {
122 123 124 125 126
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      auto in_0_e = EigenVector<T>::Flatten(in_0);
      auto in_1_e = EigenVector<T>::Flatten(in_1);
      result.device(place) = in_0_e + in_1_e;
127
    } else if (length_0 && in_0.IsInitialized()) {
128 129 130
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_0);
131
    } else if (length_1 && in_1.IsInitialized()) {
132 133 134
      auto result = EigenVector<T>::Flatten(*out);
      auto &place = *dev_ctx.eigen_device();
      result.device(place) = EigenVector<T>::Flatten(in_1);
Z
zhaoyuchen2018 已提交
135
    }
136
    return;
Z
zhaoyuchen2018 已提交
137
  }
138 139

  int start = in_place ? 1 : 0;
Z
zhaoyuchen2018 已提交
140
  if (!in_place) {
141
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> constant_functor;
Z
zhaoyuchen2018 已提交
142
    constant_functor(
143 144
        context.template device_context<platform::CUDADeviceContext>(),
        out,
Z
zhaoyuchen2018 已提交
145 146 147 148 149 150 151 152 153 154 155
        static_cast<T>(0));
  }

  std::vector<const T *> in_data;
  std::vector<int> selectrow_index;
  int64_t lod_length = 0;
  bool dst_write = false;
  for (int i = start; i < in_num; ++i) {
    if (in_vars[i]->IsType<framework::LoDTensor>()) {
      auto &in_i = in_vars[i]->Get<framework::LoDTensor>();
      lod_length = in_i.numel();
156 157 158
      if (lod_length && in_i.IsInitialized()) {
        in_data.emplace_back(in_i.data<T>());
      }
159
    } else if (in_vars[i]->IsType<phi::SelectedRows>()) {
Z
zhaoyuchen2018 已提交
160 161 162 163
      selectrow_index.push_back(i);
    }
  }

164
  // compute select rows separately.
Z
zhaoyuchen2018 已提交
165 166 167 168 169
  if (!selectrow_index.empty()) {
    std::vector<const T *> sr_in_out_data;
    size_t rows = 0;
    int64_t length = 0;
    for (auto index : selectrow_index) {
170
      auto &sr = in_vars[index]->Get<phi::SelectedRows>();
Z
zhaoyuchen2018 已提交
171 172 173 174 175 176
      auto &sr_value = sr.value();
      auto &sr_rows = sr.rows();

      auto row_numel = sr_value.numel() / sr_rows.size();
      auto out_dims = out->dims();

177 178
      PADDLE_ENFORCE_EQ(sr.height(),
                        out_dims[0],
179 180 181 182
                        platform::errors::InvalidArgument(
                            "The table height of input must be same as output, "
                            "but received input height is %d"
                            ", output height is %d",
183 184 185 186
                            sr.height(),
                            out_dims[0]));
      PADDLE_ENFORCE_EQ(row_numel,
                        out->numel() / sr.height(),
187 188 189 190
                        platform::errors::InvalidArgument(
                            "The table width of input must be same as output, "
                            "but received input width is %d"
                            ", output width is %d",
191 192
                            row_numel,
                            out->numel() / sr.height()));
Z
zhaoyuchen2018 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205

      auto *sr_data = sr_value.data<T>();
      auto *sr_out_data = out->data<T>();
      rows += sr_rows.size();
      length = row_numel;

      for (size_t i = 0; i < sr_rows.size(); ++i) {
        sr_in_out_data.emplace_back(&sr_data[i * row_numel]);
        sr_in_out_data.emplace_back(&sr_out_data[sr_rows[i] * row_numel]);
      }
    }
    if (!sr_in_out_data.empty()) {
      auto tmp_sr_in_out_array =
206
          memory::Alloc(dev_ctx, sr_in_out_data.size() * sizeof(T *));
Z
zhaoyuchen2018 已提交
207

208 209
      memory::Copy(dev_ctx.GetPlace(),
                   tmp_sr_in_out_array->ptr(),
210
                   platform::CPUPlace(),
Z
zhaoyuchen2018 已提交
211
                   reinterpret_cast<void *>(sr_in_out_data.data()),
212 213
                   sr_in_out_data.size() * sizeof(T *),
                   dev_ctx.stream());
Z
zhaoyuchen2018 已提交
214 215 216 217 218

      T **sr_in_out_array_data =
          reinterpret_cast<T **>(tmp_sr_in_out_array->ptr());

      ComputeKernelParameter(length);
219 220
      SumSelectedRowsCUDAKernel<T>
          <<<grids, blocks, 0, stream>>>(sr_in_out_array_data, length, rows);
Z
zhaoyuchen2018 已提交
221 222 223 224 225
      dst_write = true;
    }
  }
  // if indata not null, merge into one kernel call.
  if (!in_data.empty()) {
226
    auto tmp_in_array = memory::Alloc(dev_ctx, in_data.size() * sizeof(T *));
Z
zhaoyuchen2018 已提交
227

228 229 230
    memory::Copy(dev_ctx.GetPlace(),
                 tmp_in_array->ptr(),
                 platform::CPUPlace(),
Z
zhaoyuchen2018 已提交
231
                 reinterpret_cast<void *>(in_data.data()),
232 233
                 in_data.size() * sizeof(T *),
                 dev_ctx.stream());
Z
zhaoyuchen2018 已提交
234 235 236

    T **in_array_data = reinterpret_cast<T **>(tmp_in_array->ptr());
    ComputeKernelParameter(lod_length);
237 238 239 240 241
    SumArrayCUDAKernel<T><<<grids, blocks, 0, stream>>>(in_array_data,
                                                        out->data<T>(),
                                                        lod_length,
                                                        in_data.size(),
                                                        dst_write | in_place);
Z
zhaoyuchen2018 已提交
242 243 244 245 246 247 248 249 250 251 252
  }
}

template <typename T>
class SumKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto out_var = context.OutputVar("Out");

    if (out_var->IsType<framework::LoDTensor>()) {
253
      SumToLoDTensor<T>(context);
254
    } else if (out_var->IsType<phi::SelectedRows>()) {
Z
zhaoyuchen2018 已提交
255 256 257 258
      SelectedRowsCompute<platform::CUDADeviceContext, T>(context);
    } else if (out_var->IsType<framework::LoDTensorArray>()) {
      LodTensorArrayCompute<platform::CUDADeviceContext, T>(context);
    } else {
259
      PADDLE_THROW(platform::errors::InvalidArgument(
260
          "Expected type of Output(out) must be Tensor,  SelectedRows or "
261 262 263
          "LodTensorArray. But got "
          "unsupport type: %s.",
          framework::ToTypeName(out_var->Type())));
Z
zhaoyuchen2018 已提交
264 265 266 267 268 269
    }
  }
};
}  // namespace operators
}  // namespace paddle

270
namespace ops = paddle::operators;
C
chengduo 已提交
271
namespace plat = paddle::platform;
Q
QI JUN 已提交
272
REGISTER_OP_CUDA_KERNEL(
273 274
    sum,
    ops::SumKernel<paddle::platform::CUDADeviceContext, float>,
Q
QI JUN 已提交
275 276
    ops::SumKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, int>,
C
chengduo 已提交
277
    ops::SumKernel<paddle::platform::CUDADeviceContext, int64_t>,
278 279
    ops::SumKernel<paddle::platform::CUDADeviceContext, plat::float16>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, plat::bfloat16>);