yolov3_loss_op.cc 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/yolov3_loss_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
28 29
    PADDLE_ENFORCE(ctx->HasInput("GTLabel"),
                   "Input(GTLabel) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
32 33

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
34 35
    auto dim_gtbox = ctx->GetInputDim("GTBox");
    auto dim_gtlabel = ctx->GetInputDim("GTLabel");
36 37
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
    auto class_num = ctx->Attrs().Get<int>("class_num");
D
dengkaipeng 已提交
38 39 40 41 42 43
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
    PADDLE_ENFORCE_EQ(dim_x[1], anchors.size() / 2 * (5 + class_num),
                      "Input(X) dim[1] should be equal to (anchor_number * (5 "
                      "+ class_num)).");
D
dengkaipeng 已提交
44 45 46 47 48 49 50 51 52
    PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
                      "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
    PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
                      "Input(GTBox) should be a 2-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
                      "Input(GTBox) and Input(GTLabel) dim[0] should be same");
    PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
                      "Input(GTBox) and Input(GTLabel) dim[1] should be same");
53 54 55 56 57 58 59
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

D
dengkaipeng 已提交
60 61
    std::vector<int64_t> dim_out({1});
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
62 63 64 65 66 67
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
D
dengkaipeng 已提交
68 69
        framework::ToDataType(ctx.Input<Tensor>("X")->type()),
        platform::CPUPlace());
70 71 72 73 74 75 76
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
77 78 79 80 81
             "The input tensor of YOLO v3 loss operator, "
             "This is a 4-D tensor with shape of [N, C, H, W]."
             "H and W should be same, and the second dimention(C) stores"
             "box locations, confidence score and classification one-hot"
             "key of each anchor box");
82 83 84 85
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
D
dengkaipeng 已提交
86 87 88 89 90 91 92 93 94
             "In the third dimention, stores x, y, w, h coordinates, "
             "x, y is the center cordinate of boxes and w, h is the "
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
             "and each element shoudl be an integer to indicate the "
             "box class id.");
D
dengkaipeng 已提交
95 96 97
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
              "This is a 1-D tensor with shape of [1]");
98 99

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
100 101 102 103 104
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
                              "it will be parsed pair by pair.");
    AddAttr<float>("ignore_thresh",
                   "The ignore threshold to ignore confidence loss.");
D
dengkaipeng 已提交
105
    AddAttr<float>("loss_weight_xy", "The weight of x, y location loss.")
D
dengkaipeng 已提交
106
        .SetDefault(1.0);
D
dengkaipeng 已提交
107
    AddAttr<float>("loss_weight_wh", "The weight of w, h location loss.")
D
dengkaipeng 已提交
108 109
        .SetDefault(1.0);
    AddAttr<float>(
D
dengkaipeng 已提交
110
        "loss_weight_conf_target",
D
dengkaipeng 已提交
111 112
        "The weight of confidence score loss in locations with target object.")
        .SetDefault(1.0);
D
dengkaipeng 已提交
113
    AddAttr<float>("loss_weight_conf_notarget",
D
dengkaipeng 已提交
114 115 116
                   "The weight of confidence score loss in locations without "
                   "target object.")
        .SetDefault(1.0);
D
dengkaipeng 已提交
117
    AddAttr<float>("loss_weight_class", "The weight of classification loss.")
D
dengkaipeng 已提交
118
        .SetDefault(1.0);
119 120 121
    AddComment(R"DOC(
         This operator generate yolov3 loss by given predict result and ground
         truth boxes.
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
         
         The output of previous network is in shape [N, C, H, W], while H and W
         should be the same, specify the grid size, each grid point predict given
         number boxes, this given number is specified by anchors, it should be 
         half anchors length, which following will be represented as S. In the 
         second dimention(the channel dimention), C should be S * (class_num + 5),
         class_num is the box categoriy number of source dataset(such as coco), 
         so in the second dimention, stores 4 box location coordinates x, y, w, h 
         and confidence score of the box and class one-hot key of each anchor box.

         While the 4 location coordinates if $$tx, ty, tw, th$$, the box predictions
         correspnd to:

         $$
         b_x = \sigma(t_x) + c_x
         b_y = \sigma(t_y) + c_y
         b_w = p_w e^{t_w}
         b_h = p_h e^{t_h}
         $$

         While $$c_x, c_y$$ is the left top corner of current grid and $$p_w, p_h$$
         is specified by anchors.

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
         the max IoU should be 1, and if the anchor box has IoU bigger then ignore 
         thresh, the confidence score loss of this anchor box will be ignored.

         Therefore, the yolov3 loss consist of three major parts, box location loss,
         confidence score loss, and classification loss. The MSE loss is used for 
         box location, and binary cross entropy loss is used for confidence score 
         loss and classification loss.
D
dengkaipeng 已提交
154 155 156 157

         Final loss will be represented as follow.

         $$
D
dengkaipeng 已提交
158 159 160 161
         loss = \loss_weight_{xy} * loss_{xy} + \loss_weight_{wh} * loss_{wh}
              + \loss_weight_{conf_target} * loss_{conf_target}
              + \loss_weight_{conf_notarget} * loss_{conf_notarget}
              + \loss_weight_{class} * loss_{class}
D
dengkaipeng 已提交
162
         $$
163 164 165 166 167 168 169 170 171
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
172 173
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
174 175 176 177 178 179
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

180
 protected:
181 182 183
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
D
dengkaipeng 已提交
184 185
        framework::ToDataType(ctx.Input<Tensor>("X")->type()),
        platform::CPUPlace());
186 187 188
  }
};

189 190 191 192 193 194 195 196 197 198
class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("yolov3_loss_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("GTBox", Input("GTBox"));
D
dengkaipeng 已提交
199
    op->SetInput("GTLabel", Input("GTLabel"));
200 201 202 203 204 205
    op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("GTBox"), {});
D
dengkaipeng 已提交
206
    op->SetOutput(framework::GradVarName("GTLabel"), {});
207 208 209 210
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

211 212 213 214 215
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
216
                  ops::Yolov3LossGradMaker);
217 218 219 220 221 222 223
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
REGISTER_OP_CPU_KERNEL(
    yolov3_loss,
    ops::Yolov3LossKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    yolov3_loss_grad,
    ops::Yolov3LossGradKernel<paddle::platform::CPUDeviceContext, float>);