ut_helper.h 7.8 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <gtest/gtest.h>
F
flame 已提交
18
#include <map>
F
flame 已提交
19 20 21 22 23 24
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

25
#include "paddle/fluid/framework/block_desc.h"
F
flame 已提交
26 27 28
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
29
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
F
flame 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#include "paddle/fluid/inference/anakin/engine.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/platform/enforce.h"

using anakin::Precision;

namespace paddle {
namespace inference {
namespace anakin {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
  std::uniform_real_distribution<double> dist(low, high);
  return dist(mt);
}

51 52
void RandomizeTensor(framework::LoDTensor* tensor,
                     const platform::Place& place) {
F
flame 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);

  for (size_t i = 0; i < num_elements; i++) {
    *(temp_data + i) = random(0., 1.);
  }

  TensorCopySync(temp_tensor, place, tensor);
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding
 * anakin
 * layer.
 */
74
template <typename TargetT, ::anakin::Precision PrecisionT>
F
flame 已提交
75
class AnakinConvertValidation {
76
  using AnakinNvEngineT = AnakinEngine<TargetT, PrecisionT>;
F
flame 已提交
77 78 79 80 81

 public:
  AnakinConvertValidation() = delete;

  AnakinConvertValidation(const std::unordered_set<std::string>& parameters,
82 83 84 85 86
                          framework::Scope* scope,
                          const platform::DeviceContext& ctx,
                          bool use_gpu = true)
      : parameters_(parameters), scope_(scope), ctx_(ctx), use_gpu_(use_gpu) {
    engine_.reset(new AnakinEngine<TargetT, PrecisionT>(true));
F
flame 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
  }

  // Declare a Variable as input with random initialization.
  void DeclInputVar(const std::string& name,
                    const std::vector<int> tensor_dims) {
    DeclVar(name, tensor_dims);
    // should decalre anakin input here.
  }

  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
    // should declare anakin output here.
  }

  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
N
nhzlx 已提交
106
    auto* x = scope_->Var(name);
F
flame 已提交
107 108
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
109
    RandomizeTensor(x_tensor, ctx_.GetPlace());
110 111 112 113 114 115 116 117 118 119 120

    std::vector<int64_t> dim_vec_int64;
    for (auto& ele : dim_vec) {
      dim_vec_int64.push_back(static_cast<int64_t>(ele));
    }

    // Add var_desc to block_desc
    auto* block_desc = program_desc_.MutableBlock(framework::kRootBlockIndex);

    auto* var_desc = block_desc->Var(name);
    var_desc->SetShape(dim_vec_int64);
F
flame 已提交
121 122 123 124 125 126 127
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
    // should init anakin engine here.

128
    auto& block_desc = program_desc_.Block(framework::kRootBlockIndex);
129
    Singleton<AnakinOpConverter<TargetT, PrecisionT>>::Global().ConvertOp(
130 131
        desc, block_desc, parameters_, *scope_, engine_.get(),
        true /*test_mode*/);
F
flame 已提交
132
    engine_->Freeze();
133 134

    std::map<std::string, std::vector<int>> temp_max_input_shape;
F
flame 已提交
135 136
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
N
nhzlx 已提交
137
      auto& t = inference::analysis::GetFromScope<framework::LoDTensor>(*scope_,
F
flame 已提交
138
                                                                        input);
139
      auto t_shape = framework::vectorize<int>(t.dims());
140 141 142
      while (t_shape.size() < 4) {
        t_shape.push_back(1);
      }
F
flame 已提交
143
      engine_->SetInputShape(input, t_shape);
144
      temp_max_input_shape[input] = t_shape;
F
flame 已提交
145
    }
146
    engine_->SetMaxInputShape(temp_max_input_shape);
F
flame 已提交
147
    engine_->Optimize();
148
    engine_->InitNet();
F
flame 已提交
149 150 151 152 153 154 155 156
  }

  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
    // Execute Fluid Op
157
    op_->Run(*scope_, ctx_.GetPlace());
F
flame 已提交
158

F
flame 已提交
159 160 161
    std::map<std::string, framework::LoDTensor*> inputs;
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
N
nhzlx 已提交
162
      auto* var = scope_->FindVar(input);
F
flame 已提交
163 164 165 166 167 168
      auto tensor = var->GetMutable<framework::LoDTensor>();
      inputs.insert({input, tensor});
    }

    std::map<std::string, framework::LoDTensor*> outputs;
    std::vector<std::vector<float>> fluid_outputs;
F
flame 已提交
169 170 171
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> fluid_out;
N
nhzlx 已提交
172
      auto* var = scope_->FindVar(output);
F
flame 已提交
173
      auto tensor = var->GetMutable<framework::LoDTensor>();
174
      framework::TensorToVector(*tensor, ctx_, &fluid_out);
F
flame 已提交
175
      fluid_outputs.push_back(fluid_out);
F
flame 已提交
176

F
flame 已提交
177 178 179
      outputs.insert({output, tensor});
    }

180 181 182 183 184 185 186 187
    if (!use_gpu_) {
      engine_->Execute(inputs, outputs);
    } else {
      cudaStream_t stream;
      PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream), 0);
      engine_->Execute(inputs, outputs, stream);
    }

F
flame 已提交
188 189 190 191
    int i_output = 0;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> anakin_out;
N
nhzlx 已提交
192
      auto* var = scope_->FindVar(output);
F
flame 已提交
193
      auto tensor = var->GetMutable<framework::LoDTensor>();
194
      framework::TensorToVector(*tensor, ctx_, &anakin_out);
F
flame 已提交
195 196 197 198

      size_t anakin_out_size = anakin_out.size();
      auto fluid_out = fluid_outputs[i_output++];
      for (size_t i = 0; i < anakin_out_size; i++) {
199
        EXPECT_LT(std::abs(fluid_out[i] - anakin_out[i]), 1e-3);
F
flame 已提交
200 201 202 203 204 205 206 207
      }
    }
  }

 private:
  std::unique_ptr<AnakinNvEngineT> engine_{nullptr};
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
208
  framework::ProgramDesc program_desc_;
F
flame 已提交
209
  const std::unordered_set<std::string>& parameters_;
N
nhzlx 已提交
210
  framework::Scope* scope_;
211 212
  const platform::DeviceContext& ctx_;
  bool use_gpu_{true};
F
flame 已提交
213 214
};

215 216 217 218
template class AnakinConvertValidation<::anakin::saber::NV,
                                       ::anakin::Precision::FP32>;
template class AnakinConvertValidation<::anakin::saber::NV,
                                       ::anakin::Precision::INT8>;
219 220 221
#ifdef ANAKIN_X86_PLACE
template class AnakinConvertValidation<::anakin::saber::X86,
                                       ::anakin::Precision::FP32>;
222 223
template class AnakinConvertValidation<::anakin::saber::X86,
                                       ::anakin::Precision::INT8>;
224
#endif
F
flame 已提交
225 226 227
}  // namespace anakin
}  // namespace inference
}  // namespace paddle