testsuite.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19 20 21 22
import numpy as np

import paddle.fluid.core as core
from paddle.fluid.op import Operator


P
phlrain 已提交
23
def create_op(scope, op_type, inputs, outputs, attrs, cache_list=None):
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    kwargs = dict()

    op_maker = core.op_proto_and_checker_maker
    op_role_attr_name = op_maker.kOpRoleAttrName()

    if op_role_attr_name not in attrs:
        attrs[op_role_attr_name] = int(op_maker.OpRole.Forward)

    def __create_var__(name, var_name):
        scope.var(var_name).get_tensor()
        kwargs[name].append(var_name)

    for in_name, in_dup in Operator.get_op_inputs(op_type):
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
                for item in sub_in:
                    sub_in_name, _ = item[0], item[1]
                    __create_var__(in_name, sub_in_name)
            else:
                __create_var__(in_name, in_name)
P
phlrain 已提交
46 47 48 49 50
    if cache_list != None and isinstance(cache_list, list):
        for name in cache_list:
            kwargs[name] = []
            scope.var(name)
            kwargs[name].append(name)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

    for out_name, out_dup in Operator.get_op_outputs(op_type):
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
                sub_out = outputs[out_name]
                for item in sub_out:
                    sub_out_name, _ = item[0], item[1]
                    __create_var__(out_name, sub_out_name)
            else:
                __create_var__(out_name, out_name)

    for attr_name in Operator.get_op_attr_names(op_type):
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]

    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
D
dzhwinter 已提交
71 72 73 74 75
    def np_value_to_fluid_value(input):
        if input.dtype == np.float16:
            input = input.view(np.uint16)
        return input

76 77 78 79
    def __set_input__(var_name, var):
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
80
                tensor.set_recursive_sequence_lengths(var[1])
81
                var = var[0]
Y
yuyang18 已提交
82
            tensor._set_dims(var.shape)
D
dzhwinter 已提交
83
            tensor.set(np_value_to_fluid_value(var), place)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)

    for in_name, in_dup in Operator.get_op_inputs(op.type()):
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
                for item in sub_in:
                    sub_in_name, sub_in_val = item[0], item[1]
                    __set_input__(sub_in_name, sub_in_val)
            else:
                __set_input__(in_name, inputs[in_name])


def append_input_output(block, op_proto, np_list, is_input, dtype):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        dtype = None
        shape = None
        lod_level = None
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
        else:
D
dzhwinter 已提交
111
            # inferece the dtype from numpy value.
112 113 114 115 116 117 118 119 120 121 122 123
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                dtype = np_value[0].dtype
                # output shape, lod should be infered from input.
                if is_input:
                    shape = list(np_value[0].shape)
                    lod_level = len(np_value[1])
            else:
                dtype = np_value.dtype
                if is_input:
                    shape = list(np_value.shape)
                    lod_level = 0
D
dzhwinter 已提交
124 125 126 127 128 129 130 131 132 133
        # NOTE(dzhwinter): type hacking
        # numpy float16 is binded to paddle::platform::float16
        # in tensor_py.h via the help of uint16 datatype. Because
        # the internal memory representation of float16 is
        # actually uint16_t in paddle. So we use np.uint16 in numpy for
        # raw memory, it can pass through the pybind. So in the testcase,
        # we feed data use data.view(uint16), but the dtype is float16 in fact.
        # The data.view(uint16) means do not cast the data type, but process data as the uint16
        if dtype == np.uint16:
            dtype = np.float16
134 135 136 137 138 139
        return block.create_var(
            dtype=dtype, shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
Q
qingqing01 已提交
140 141
        if (var_name not in np_list) and var_proto.dispensable:
            continue
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        if is_input:
            assert (var_name in np_list) or (var_proto.dispensable), \
                "Missing {} as input".format(var_name)
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


def append_loss_ops(block, output_names):
160
    mean_inputs = list(map(block.var, output_names))
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

    if len(mean_inputs) == 1:
        loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1])
        op = block.append_op(
            inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
    else:
        avg_sum = []
        for cur_loss in mean_inputs:
            cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1])
            op = block.append_op(
                inputs={"X": [cur_loss]},
                outputs={"Out": [cur_avg_loss]},
                type="mean")
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
            avg_sum.append(cur_avg_loss)

        loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1])
        op_sum = block.append_op(
            inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
        op_sum.desc.infer_var_type(block.desc)
        op_sum.desc.infer_shape(block.desc)

        loss = block.create_var(dtype=loss_sum.dtype, shape=[1])
        op_loss = block.append_op(
            inputs={"X": loss_sum},
            outputs={"Out": loss},
            type='scale',
            attrs={'scale': 1.0 / float(len(avg_sum))})
        op_loss.desc.infer_var_type(block.desc)
        op_loss.desc.infer_shape(block.desc)
    return loss