generate_proposals_op.cc 19.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include <cmath>
#include <cstring>
17 18 19
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/operators/detail/safe_ref.h"
21 22 23 24 25 26 27 28 29
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

30
static const double kBBoxClipDefault = std::log(1000.0 / 16.0);
31

32 33 34 35 36 37 38 39 40
static void AppendProposals(Tensor *dst, int64_t offset, const Tensor &src) {
  auto *out_data = dst->data<void>();
  auto *to_add_data = src.data<void>();
  size_t size_of_t = framework::SizeOfType(src.type());
  offset *= size_of_t;
  std::memcpy(
      reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(out_data) + offset),
      to_add_data, src.numel() * size_of_t);
}
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

class GenerateProposalsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Scores"), "Input(Scores) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("BboxDeltas"),
                   "Input(BboxDeltas) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("ImInfo"), "Input(ImInfo) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Anchors"),
                   "Input(Anchors) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Variances"),
                   "Input(Variances) shouldn't be null.");

    ctx->SetOutputDim("RpnRois", {-1, 4});
    ctx->SetOutputDim("RpnRoiProbs", {-1, 1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
63 64
    return framework::OpKernelType(ctx.Input<Tensor>("Anchors")->type(),
                                   ctx.device_context());
65 66 67 68
  }
};

template <class T>
69 70 71
static inline void BoxCoder(const platform::DeviceContext &ctx,
                            Tensor *all_anchors, Tensor *bbox_deltas,
                            Tensor *variances, Tensor *proposals) {
72 73 74 75 76 77 78 79 80 81 82 83 84
  T *proposals_data = proposals->mutable_data<T>(ctx.GetPlace());

  int64_t row = all_anchors->dims()[0];
  int64_t len = all_anchors->dims()[1];

  auto *bbox_deltas_data = bbox_deltas->data<T>();
  auto *anchor_data = all_anchors->data<T>();
  const T *variances_data = nullptr;
  if (variances) {
    variances_data = variances->data<T>();
  }

  for (int64_t i = 0; i < row; ++i) {
85 86
    T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0;
    T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0;
87

88 89
    T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width;
    T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height;
90 91 92 93 94 95 96 97 98 99 100

    T bbox_center_x = 0, bbox_center_y = 0;
    T bbox_width = 0, bbox_height = 0;

    if (variances) {
      bbox_center_x =
          variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width +
          anchor_center_x;
      bbox_center_y = variances_data[i * len + 1] *
                          bbox_deltas_data[i * len + 1] * anchor_height +
                      anchor_center_y;
101 102
      bbox_width = std::exp(std::min<T>(variances_data[i * len + 2] *
                                            bbox_deltas_data[i * len + 2],
103
                                        kBBoxClipDefault)) *
104
                   anchor_width;
105 106
      bbox_height = std::exp(std::min<T>(variances_data[i * len + 3] *
                                             bbox_deltas_data[i * len + 3],
107
                                         kBBoxClipDefault)) *
108 109 110 111 112 113
                    anchor_height;
    } else {
      bbox_center_x =
          bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
      bbox_center_y =
          bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;
114
      bbox_width = std::exp(std::min<T>(bbox_deltas_data[i * len + 2],
115
                                        kBBoxClipDefault)) *
116 117
                   anchor_width;
      bbox_height = std::exp(std::min<T>(bbox_deltas_data[i * len + 3],
118
                                         kBBoxClipDefault)) *
119
                    anchor_height;
120 121 122 123
    }

    proposals_data[i * len] = bbox_center_x - bbox_width / 2;
    proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
124 125
    proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1;
    proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1;
126 127 128 129 130
  }
  // return proposals;
}

template <class T>
131 132
static inline void ClipTiledBoxes(const platform::DeviceContext &ctx,
                                  const Tensor &im_info, Tensor *boxes) {
133 134
  T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
  const T *im_info_data = im_info.data<T>();
135
  T zero(0);
136 137 138
  for (int64_t i = 0; i < boxes->numel(); ++i) {
    if (i % 4 == 0) {
      boxes_data[i] =
139
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
140 141
    } else if (i % 4 == 1) {
      boxes_data[i] =
142
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
143 144
    } else if (i % 4 == 2) {
      boxes_data[i] =
145
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
146 147
    } else {
      boxes_data[i] =
148
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
149 150 151 152 153
    }
  }
}

template <class T>
154 155 156
static inline void FilterBoxes(const platform::DeviceContext &ctx,
                               Tensor *boxes, float min_size,
                               const Tensor &im_info, Tensor *keep) {
157 158
  const T *im_info_data = im_info.data<T>();
  T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
159
  T im_scale = im_info_data[2];
160
  keep->Resize({boxes->dims()[0]});
161
  min_size = std::max(min_size, 1.0f);
162 163 164 165 166 167
  int *keep_data = keep->mutable_data<int>(ctx.GetPlace());

  int keep_len = 0;
  for (int i = 0; i < boxes->dims()[0]; ++i) {
    T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
    T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
168 169 170 171
    T ws_origin_scale =
        (boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_scale + 1;
    T hs_origin_scale =
        (boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_scale + 1;
172 173
    T x_ctr = boxes_data[4 * i] + ws / 2;
    T y_ctr = boxes_data[4 * i + 1] + hs / 2;
174 175
    if (ws_origin_scale >= min_size && hs_origin_scale >= min_size &&
        x_ctr <= im_info_data[1] && y_ctr <= im_info_data[0]) {
176 177 178 179 180 181 182
      keep_data[keep_len++] = i;
    }
  }
  keep->Resize({keep_len});
}

template <class T>
183 184 185 186
static inline std::vector<std::pair<T, int>> GetSortedScoreIndex(
    const std::vector<T> &scores) {
  std::vector<std::pair<T, int>> sorted_indices;
  sorted_indices.reserve(scores.size());
187
  for (size_t i = 0; i < scores.size(); ++i) {
188
    sorted_indices.emplace_back(scores[i], i);
189 190
  }
  // Sort the score pair according to the scores in descending order
191 192 193 194 195
  std::stable_sort(sorted_indices.begin(), sorted_indices.end(),
                   [](const std::pair<T, int> &a, const std::pair<T, int> &b) {
                     return a.first < b.first;
                   });
  return sorted_indices;
196 197 198
}

template <class T>
199
static inline T BBoxArea(const T *box, bool normalized) {
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
217
static inline T JaccardOverlap(const T *box1, const T *box2, bool normalized) {
218 219 220 221 222 223 224 225
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
226 227
    const T inter_w = std::max(T(0), inter_xmax - inter_xmin + 1);
    const T inter_h = std::max(T(0), inter_ymax - inter_ymin + 1);
228 229 230 231 232 233 234
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

235 236 237 238 239 240 241 242 243 244 245 246
template <typename T>
static inline Tensor VectorToTensor(const std::vector<T> &selected_indices,
                                    int selected_num) {
  Tensor keep_nms;
  keep_nms.Resize({selected_num});
  auto *keep_data = keep_nms.mutable_data<T>(platform::CPUPlace());
  for (int i = 0; i < selected_num; ++i) {
    keep_data[i] = selected_indices[i];
  }
  return keep_nms;
}

247
template <class T>
248 249
static inline Tensor NMS(const platform::DeviceContext &ctx, Tensor *bbox,
                         Tensor *scores, T nms_threshold, float eta) {
250 251 252 253 254 255 256
  PADDLE_ENFORCE_NOT_NULL(bbox);
  int64_t num_boxes = bbox->dims()[0];
  // 4: [xmin ymin xmax ymax]
  int64_t box_size = bbox->dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores->data<T>(), num_boxes, scores_data.begin());
257 258
  std::vector<std::pair<T, int>> sorted_indices =
      GetSortedScoreIndex<T>(scores_data);
259 260 261 262 263 264

  std::vector<int> selected_indices;
  int selected_num = 0;
  T adaptive_threshold = nms_threshold;
  const T *bbox_data = bbox->data<T>();
  while (sorted_indices.size() != 0) {
265 266 267
    int idx = sorted_indices.back().second;
    bool flag = true;
    for (int kept_idx : selected_indices) {
268 269 270 271 272 273 274 275 276 277
      if (flag) {
        T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size, false);
        flag = (overlap <= adaptive_threshold);
      } else {
        break;
      }
    }
    if (flag) {
      selected_indices.push_back(idx);
278
      ++selected_num;
279
    }
J
jerrywgz 已提交
280
    sorted_indices.erase(sorted_indices.end() - 1);
281 282 283 284
    if (flag && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
285
  return VectorToTensor(selected_indices, selected_num);
286 287
}

288
template <typename T>
289 290 291 292 293 294
class GenerateProposalsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *scores = context.Input<Tensor>("Scores");
    auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
    auto *im_info = context.Input<Tensor>("ImInfo");
295 296 297 298 299 300
    auto anchors = detail::Ref(context.Input<Tensor>("Anchors"),
                               "Cannot find input Anchors(%s) in scope",
                               context.Inputs("Anchors")[0]);
    auto variances = detail::Ref(context.Input<Tensor>("Variances"),
                                 "Cannot find input Variances(%s) in scope",
                                 context.Inputs("Variances")[0]);
301 302 303 304 305 306 307 308 309 310

    auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
    auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");

    int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
    int post_nms_top_n = context.Attr<int>("post_nms_topN");
    float nms_thresh = context.Attr<float>("nms_thresh");
    float min_size = context.Attr<float>("min_size");
    float eta = context.Attr<float>("eta");

311 312
    auto &dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
313

314
    auto &scores_dim = scores->dims();
315 316 317 318 319
    int64_t num = scores_dim[0];
    int64_t c_score = scores_dim[1];
    int64_t h_score = scores_dim[2];
    int64_t w_score = scores_dim[3];

320
    auto &bbox_dim = bbox_deltas->dims();
321 322 323 324 325 326
    int64_t c_bbox = bbox_dim[1];
    int64_t h_bbox = bbox_dim[2];
    int64_t w_bbox = bbox_dim[3];

    rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
                              context.GetPlace());
327
    rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());
328 329 330 331 332 333 334

    Tensor bbox_deltas_swap, scores_swap;
    bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
                                     dev_ctx.GetPlace());
    scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
                                dev_ctx.GetPlace());

335
    math::Transpose<platform::CPUDeviceContext, T, 4> trans;
336 337 338 339 340
    std::vector<int> axis = {0, 2, 3, 1};
    trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
    trans(dev_ctx, *scores, &scores_swap, axis);

    framework::LoD lod;
341 342 343 344 345
    lod.resize(1);
    auto &lod0 = lod[0];
    lod0.push_back(0);
    anchors.Resize({anchors.numel() / 4, 4});
    variances.Resize({variances.numel() / 4, 4});
346 347 348 349 350 351 352 353 354 355 356

    int64_t num_proposals = 0;
    for (int64_t i = 0; i < num; ++i) {
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
      Tensor scores_slice = scores_swap.Slice(i, i + 1);

      bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
      scores_slice.Resize({h_score * w_score * c_score, 1});

      std::pair<Tensor, Tensor> tensor_pair =
357
          ProposalForOneImage(dev_ctx, im_info_slice, anchors, variances,
358 359
                              bbox_deltas_slice, scores_slice, pre_nms_top_n,
                              post_nms_top_n, nms_thresh, min_size, eta);
360 361
      Tensor &proposals = tensor_pair.first;
      Tensor &scores = tensor_pair.second;
362

363 364
      AppendProposals(rpn_rois, 4 * num_proposals, proposals);
      AppendProposals(rpn_roi_probs, num_proposals, scores);
365
      num_proposals += proposals.dims()[0];
366
      lod0.push_back(num_proposals);
367 368 369 370 371 372 373 374
    }
    rpn_rois->set_lod(lod);
    rpn_roi_probs->set_lod(lod);
    rpn_rois->Resize({num_proposals, 4});
    rpn_roi_probs->Resize({num_proposals, 1});
  }

  std::pair<Tensor, Tensor> ProposalForOneImage(
375
      const platform::CPUDeviceContext &ctx, const Tensor &im_info_slice,
376 377 378 379 380 381 382 383 384 385 386 387 388 389
      const Tensor &anchors, const Tensor &variances,
      const Tensor &bbox_deltas_slice,  // [M, 4]
      const Tensor &scores_slice,       // [N, 1]
      int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
      float eta) const {
    auto *scores_data = scores_slice.data<T>();

    // Sort index
    Tensor index_t;
    index_t.Resize({scores_slice.numel()});
    int *index = index_t.mutable_data<int>(ctx.GetPlace());
    for (int i = 0; i < scores_slice.numel(); ++i) {
      index[i] = i;
    }
390 391 392
    auto compare = [scores_data](const int64_t &i, const int64_t &j) {
      return scores_data[i] > scores_data[j];
    };
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

    if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
      std::sort(index, index + scores_slice.numel(), compare);
    } else {
      std::nth_element(index, index + pre_nms_top_n,
                       index + scores_slice.numel(), compare);
      index_t.Resize({pre_nms_top_n});
    }

    Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
    scores_sel.mutable_data<T>({index_t.numel(), 1}, ctx.GetPlace());
    bbox_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    anchor_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    var_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());

    CPUGather<T>(ctx, scores_slice, index_t, &scores_sel);
    CPUGather<T>(ctx, bbox_deltas_slice, index_t, &bbox_sel);
    CPUGather<T>(ctx, anchors, index_t, &anchor_sel);
    CPUGather<T>(ctx, variances, index_t, &var_sel);

    Tensor proposals;
    proposals.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    BoxCoder<T>(ctx, &anchor_sel, &bbox_sel, &var_sel, &proposals);

    ClipTiledBoxes<T>(ctx, im_info_slice, &proposals);

    Tensor keep;
    FilterBoxes<T>(ctx, &proposals, min_size, im_info_slice, &keep);

    Tensor scores_filter;
    bbox_sel.mutable_data<T>({keep.numel(), 4}, ctx.GetPlace());
    scores_filter.mutable_data<T>({keep.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, proposals, keep, &bbox_sel);
    CPUGather<T>(ctx, scores_sel, keep, &scores_filter);
    if (nms_thresh <= 0) {
428
      return std::make_pair(bbox_sel, scores_filter);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    }

    Tensor keep_nms = NMS<T>(ctx, &bbox_sel, &scores_filter, nms_thresh, eta);

    if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
      keep_nms.Resize({post_nms_top_n});
    }

    proposals.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
    scores_sel.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, bbox_sel, keep_nms, &proposals);
    CPUGather<T>(ctx, scores_filter, keep_nms, &scores_sel);

    return std::make_pair(proposals, scores_sel);
  }
};

class GenerateProposalsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    AddInput("Scores",
             "(Tensor) The scores from conv is in shape (N, A, H, W), "
             "N is batch size, A is number of anchors, "
             "H and W are height and width of the feature map");
    AddInput("BboxDeltas",
             "(Tensor) Bounding box deltas from conv is in "
             "shape (N, 4*A, H, W).");
    AddInput("ImInfo",
             "(Tensor) Information for image reshape is in shape (N, 3), "
             "in format (height, width, scale)");
    AddInput("Anchors",
             "(Tensor) Bounding box anchors from anchor_generator_op "
             "is in shape (A, H, W, 4).");
    AddInput("Variances",
             "(Tensor) Bounding box variances with same shape as `Anchors`.");

    AddOutput("RpnRois",
              "(LoDTensor), Output proposals with shape (rois_num, 4).");
    AddOutput("RpnRoiProbs",
              "(LoDTensor) Scores of proposals with shape (rois_num, 1).");
    AddAttr<int>("pre_nms_topN",
                 "Number of top scoring RPN proposals to keep before "
                 "applying NMS.");
    AddAttr<int>("post_nms_topN",
                 "Number of top scoring RPN proposals to keep after "
                 "applying NMS");
    AddAttr<float>("nms_thresh", "NMS threshold used on RPN proposals.");
    AddAttr<float>("min_size",
                   "Proposal height and width both need to be greater "
                   "than this min_size.");
479
    AddAttr<float>("eta", "The parameter for adaptive NMS.");
480
    AddComment(R"DOC(
481 482 483 484 485 486
This operator Generate bounding box proposals for Faster RCNN.
The propoasls are generated for a list of images based on image
score 'Scores', bounding box regression result 'BboxDeltas' as
well as predefined bounding box shapes 'anchors'. Greedy
non-maximum suppression is applied to generate the final bounding
boxes.
487 488 489 490 491 492 493 494 495 496 497 498

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(generate_proposals, ops::GenerateProposalsOp,
                  ops::GenerateProposalsOpMaker,
                  paddle::framework::EmptyGradOpMaker);
499 500
REGISTER_OP_CPU_KERNEL(generate_proposals, ops::GenerateProposalsKernel<float>,
                       ops::GenerateProposalsKernel<double>);