cudnn_lstm_op.cu.cc 10.5 KB
Newer Older
P
phlrain 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuhongyu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduozh 已提交
15
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
16
#include "paddle/fluid/operators/cudnn_rnn_cache.h"
C
chengduozh 已提交
17
#include "paddle/fluid/operators/math/math_function.h"
L
liuhongyu 已提交
18 19 20 21 22 23 24

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

C
chengduozh 已提交
25
template <typename T>
L
liuhongyu 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
class CudnnLSTMGPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const Tensor *x = ctx.Input<Tensor>("Input");
    const Tensor *init_h = ctx.Input<Tensor>("InitH");
    const Tensor *init_c = ctx.Input<Tensor>("InitC");

    auto w = ctx.Input<Tensor>("W");

    Tensor *out = ctx.Output<Tensor>("Out");
    Tensor *last_h = ctx.Output<Tensor>("last_h");
    Tensor *last_c = ctx.Output<Tensor>("last_c");

    const T *x_data = x->data<T>();
    const T *init_h_data = init_h->data<T>();
    const T *init_c_data = init_c->data<T>();

    const T *w_data = w->data<T>();

    T *out_data = out->mutable_data<T>(ctx.GetPlace());
    T *last_h_data = last_h->mutable_data<T>(ctx.GetPlace());
    T *last_c_data = last_c->mutable_data<T>(ctx.GetPlace());

    size_t max_len = ctx.Attr<int>("max_len");
    float dropout_prob = ctx.Attr<float>("dropout_prob");
    bool is_bidirec = ctx.Attr<bool>("is_bidirec");
    int input_size = ctx.Attr<int>("input_size");
    int hidden_size = ctx.Attr<int>("hidden_size");
    int num_layers = ctx.Attr<int>("num_layers");
    bool is_test = ctx.Attr<bool>("is_test");

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto *cache_var = ctx.InputVar("Cache");
    if (!cache_var) {
      // The RAW type cache variable wouldn't be created and broadcasted on
      // multi-devices before the first running.
      // use parent scope to make cache persistable
      auto *scope = const_cast<framework::Scope *>(ctx.scope().parent());
65
      auto cache_var_name = ctx.Inputs("Cache")[0];
L
liuhongyu 已提交
66 67 68 69
      cache_var = scope->Var(cache_var_name);
    }
    CudnnRNNCache *cudnn_rnn_cache = nullptr;
    if (cache_var->IsInitialized()) {
70
      // const_cast is usually bad.
L
liuhongyu 已提交
71 72 73
      cudnn_rnn_cache = const_cast<framework::Variable *>(cache_var)
                            ->GetMutable<CudnnRNNCache>();
    } else {
74
      // const_cast is usually bad.
L
liuhongyu 已提交
75 76 77
      cudnn_rnn_cache = const_cast<framework::Variable *>(cache_var)
                            ->GetMutable<CudnnRNNCache>();
      std::random_device rnd;
P
phlrain 已提交
78 79 80 81
      int seed = ctx.Attr<int>("seed");
      if (seed == -1) {
        seed = rnd();
      }
L
liuhongyu 已提交
82 83

      auto input_w_numel = w->numel();
P
phlrain 已提交
84
      auto batch_size = x->dims()[1];
S
sneaxiy 已提交
85 86 87
      cudnn_rnn_cache->init(handle, ctx.GetPlace(), max_len, batch_size,
                            input_size, hidden_size, num_layers, dropout_prob,
                            is_bidirec, seed, input_w_numel);
L
liuhongyu 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    }

    auto run_seq_len = x->dims()[0];

    if (is_test) {
      // for inference
      CUDNN_ENFORCE(platform::dynload::cudnnRNNForwardInference(
          handle, cudnn_rnn_cache->rnn_desc_, run_seq_len,
          cudnn_rnn_cache->x_desc_, x_data, cudnn_rnn_cache->hx_desc_,
          init_h_data, cudnn_rnn_cache->cx_desc_, init_c_data,
          cudnn_rnn_cache->w_desc_, w_data, cudnn_rnn_cache->y_desc_, out_data,
          cudnn_rnn_cache->hy_desc_, last_h_data, cudnn_rnn_cache->cy_desc_,
          last_c_data, cudnn_rnn_cache->workspace_data_.data<uint8_t>(),
          cudnn_rnn_cache->workspace_size_));
    } else {
      // for train
      CUDNN_ENFORCE(platform::dynload::cudnnRNNForwardTraining(
          handle, cudnn_rnn_cache->rnn_desc_, run_seq_len,
          cudnn_rnn_cache->x_desc_, x_data, cudnn_rnn_cache->hx_desc_,
          init_h_data, cudnn_rnn_cache->cx_desc_, init_c_data,
          cudnn_rnn_cache->w_desc_, w_data, cudnn_rnn_cache->y_desc_, out_data,
          cudnn_rnn_cache->hy_desc_, last_h_data, cudnn_rnn_cache->cy_desc_,
          last_c_data, cudnn_rnn_cache->workspace_data_.data<uint8_t>(),
          cudnn_rnn_cache->workspace_size_,
          cudnn_rnn_cache->reserve_data_.data<uint8_t>(),
          cudnn_rnn_cache->reserve_size_));
    }
  }
};

C
chengduozh 已提交
118
template <typename T>
L
liuhongyu 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
class CudnnLSTMGPUGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *input = ctx.Input<Tensor>("Input");
    auto *weight = ctx.Input<Tensor>("W");
    auto *init_h = ctx.Input<Tensor>("InitH");
    auto *init_c = ctx.Input<Tensor>("InitC");
    // auto * last_h = ctx.Input<Tensor>("last_h");
    // auto * last_c = ctx.Input<Tensor>("last_c");
    auto *out = ctx.Input<Tensor>("Out");
    auto *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *last_h_grad = ctx.Input<Tensor>(framework::GradVarName("last_h"));
    auto *last_c_grad = ctx.Input<Tensor>(framework::GradVarName("last_c"));

    // auto* init_h = ctx.Input<Tensor>("init_h");
    // auto* init_c = ctx.Input<Tensor>("init_c");

    auto *in_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto *weight_grad = ctx.Output<Tensor>(framework::GradVarName("W"));
    auto *init_h_grad = ctx.Output<Tensor>(framework::GradVarName("InitH"));
    auto *init_c_grad = ctx.Output<Tensor>(framework::GradVarName("InitC"));

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto *cache_var = ctx.InputVar("Cache");
    PADDLE_ENFORCE(cache_var->IsInitialized());
    CudnnRNNCache *cudnn_rnn_cache =
        const_cast<framework::Variable *>(cache_var)
            ->GetMutable<CudnnRNNCache>();

    auto input_dims = input->dims();
    auto init_h_dims = init_h->dims();
    auto init_c_dims = init_c->dims();
    in_grad->mutable_data<T>(ctx.GetPlace());
    weight_grad->mutable_data<T>(ctx.GetPlace());
C
chengduozh 已提交
154
    math::SetConstant<paddle::platform::CUDADeviceContext, T> zero;
L
liuhongyu 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    zero(dev_ctx, in_grad, static_cast<T>(0.0));
    zero(dev_ctx, weight_grad, static_cast<T>(0.0));

    T *init_h_grad_data = NULL;
    if (init_h_grad == nullptr) {
      Tensor init_h_grad_temp;
      init_h_grad_temp.mutable_data<T>(init_h_dims, ctx.GetPlace());
      zero(dev_ctx, &init_h_grad_temp, static_cast<T>(0.0));

      init_h_grad_data = init_h_grad_temp.data<T>();
    } else {
      init_h_grad->mutable_data<T>(init_h_dims, ctx.GetPlace());
      zero(dev_ctx, init_h_grad, static_cast<T>(0.0));
      init_h_grad_data = init_h_grad->data<T>();
    }

    T *init_c_grad_data = NULL;
    if (init_c_grad == nullptr) {
      Tensor init_c_grad_temp;
      init_c_grad_temp.mutable_data<T>(init_c_dims, ctx.GetPlace());
      zero(dev_ctx, &init_c_grad_temp, static_cast<T>(0.0));

      init_c_grad_data = init_c_grad_temp.data<T>();
    } else {
      init_c_grad->mutable_data<T>(init_c_dims, ctx.GetPlace());
      zero(dev_ctx, init_c_grad, static_cast<T>(0.0));
      init_c_grad_data = init_c_grad->data<T>();
    }

    const T *last_h_grad_data = NULL;
    if (last_h_grad == nullptr) {
      Tensor last_h_grad_temp;
      last_h_grad_temp.mutable_data<T>(init_h_dims, ctx.GetPlace());
      zero(dev_ctx, &last_h_grad_temp, static_cast<T>(0.0));

      last_h_grad_data = (const T *)last_h_grad_temp.data<T>();
    } else {
      last_h_grad_data = last_h_grad->data<T>();
    }

    const T *last_c_grad_data = NULL;
    if (last_c_grad == nullptr) {
      Tensor last_c_grad_temp;
      last_c_grad_temp.mutable_data<T>(init_c_dims, ctx.GetPlace());
      zero(dev_ctx, &last_c_grad_temp, static_cast<T>(0.0));

      last_c_grad_data = (const T *)last_c_grad_temp.data<T>();
    } else {
      last_c_grad_data = last_c_grad->data<T>();
    }

    const T *out_grad_data = NULL;
    if (out_grad == nullptr) {
      Tensor out_grad_temp;
      out_grad_temp.mutable_data<T>(out->dims(), ctx.GetPlace());
      zero(dev_ctx, &out_grad_temp, static_cast<T>(0.0));

      out_grad_data = (const T *)out_grad_temp.data<T>();
    } else {
      out_grad_data = out_grad->data<T>();
    }

    // zero( dev_ctx, last_h_grad, static_cast<T>(0.0));
    // zero( dev_ctx, last_c_grad, static_cast<T>(0.0));

    auto out_data = out->data<T>();
    // auto out_grad_data = out_grad->data<T>();
    auto weight_data = weight->data<T>();
    auto init_h_data = init_h->data<T>();
    auto init_c_data = init_c->data<T>();
    auto in_grad_data = in_grad->data<T>();

    auto work_data = cudnn_rnn_cache->workspace_data_.data<uint8_t>();
    auto reserve_data = cudnn_rnn_cache->reserve_data_.data<uint8_t>();

    auto run_seq_len = input_dims[0];
    PADDLE_ENFORCE_LE((size_t)run_seq_len, cudnn_rnn_cache->max_length_,
                      "cudnn running seq_len CAN not greater max_lengh");
    CUDNN_ENFORCE(platform::dynload::cudnnRNNBackwardData(
        handle, cudnn_rnn_cache->rnn_desc_, run_seq_len,
        cudnn_rnn_cache->y_desc_, out_data, cudnn_rnn_cache->dy_desc_,
        out_grad_data, cudnn_rnn_cache->dhy_desc_, last_h_grad_data,
        cudnn_rnn_cache->dcy_desc_, last_c_grad_data, cudnn_rnn_cache->w_desc_,
        weight_data, cudnn_rnn_cache->hx_desc_, init_h_data,
        cudnn_rnn_cache->cx_desc_, init_c_data, cudnn_rnn_cache->dx_desc_,
        in_grad_data, cudnn_rnn_cache->dhx_desc_, init_h_grad_data,
        cudnn_rnn_cache->dcx_desc_, init_c_grad_data, work_data,
        cudnn_rnn_cache->workspace_size_, reserve_data,
        cudnn_rnn_cache->reserve_size_));

    CUDNN_ENFORCE(platform::dynload::cudnnRNNBackwardWeights(
        handle, cudnn_rnn_cache->rnn_desc_, run_seq_len,
        cudnn_rnn_cache->x_desc_, input->data<T>(), cudnn_rnn_cache->hx_desc_,
        init_h->data<T>(), cudnn_rnn_cache->y_desc_, out->data<T>(),
        cudnn_rnn_cache->workspace_data_.data<uint8_t>(),
        cudnn_rnn_cache->workspace_size_, cudnn_rnn_cache->dw_desc_,
        weight_grad->data<T>(), cudnn_rnn_cache->reserve_data_.data<uint8_t>(),
        cudnn_rnn_cache->reserve_size_));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduozh 已提交
260 261
REGISTER_OP_CUDA_KERNEL(cudnn_lstm, ops::CudnnLSTMGPUKernel<float>);
REGISTER_OP_CUDA_KERNEL(cudnn_lstm_grad, ops::CudnnLSTMGPUGradKernel<float>);