logical_op.cc 6.7 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16 17 18 19 20 21 22

#include "paddle/operators/logical_op.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {
template <typename OpComment>
class BinaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
23
  BinaryLogicalOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
      : OpProtoAndCheckerMaker(proto, op_checker) {
    OpComment comment;
    AddInput("X",
             string::Sprintf("(LoDTensor) Left hand operand of %s operator",
                             comment.type));
    AddInput("Y",
             string::Sprintf("(LoDTensor) Right hand operand of %s operator",
                             comment.type));
    AddOutput("Out", string::Sprintf(
                         "(LoDTensor) n-dim bool tensor. Each element is %s",
                         comment.equation));
    AddComment(string::Sprintf(R"DOC(%s Operator

It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean tensors.
Each element of Out is calculated by %s
)DOC",
                               comment.type, comment.equation));
  }
};

template <typename OpComment>
class UnaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
47
  UnaryLogicalOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
      : OpProtoAndCheckerMaker(proto, op_checker) {
    OpComment comment;
    AddInput("X", string::Sprintf("(LoDTensor) Operand of %s operator",
                                  comment.type));
    AddOutput("Out", string::Sprintf(
                         "(LoDTensor) n-dim bool tensor. Each element is %s",
                         comment.equation));
    AddComment(string::Sprintf(R"DOC(%s Operator

It operates element-wise on X, and returns the Out. X and Out are N-dim boolean tensors.
Each element of Out is calculated by %s
)DOC",
                               comment.type, comment.equation));
  }
};

template <typename OpComment>
class BinaryLogicalOpInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    OpComment comment;
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of %s operator must not be null", comment.type);
    PADDLE_ENFORCE(context->HasInput("Y"),
                   "Input(Y) of %s operator must not be null", comment.type);
    auto dim_x = context->GetInputDim("X");
    auto dim_y = context->GetInputDim("Y");
    PADDLE_ENFORCE_EQ(framework::product(dim_x), framework::product(dim_y),
                      "The number of elements in X and Y should be same");

    context->SetOutputDim("Out", context->GetInputDim("X"));
    context->ShareLoD("X", "Out");
  }
};

template <typename OpComment>
class UnaryLogicalOpInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    OpComment comment;
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of %s operator must not be null", comment.type);
    auto dim_x = context->GetInputDim("X");

    context->SetOutputDim("Out", context->GetInputDim("X"));
    context->ShareLoD("X", "Out");
  }
};

class LogicalOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
102
  framework::OpKernelType GetActualKernelType(
103
      const framework::ExecutionContext &ctx) const override {
Q
Qiao Longfei 已提交
104
    framework::OpKernelType kt = OperatorWithKernel::GetActualKernelType(ctx);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    // LogicalOp kernel's device type is decided by input tensor place
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

}  // namespace operators
}  // namespace paddle

#define REGISTER_BINARY_LOGICAL_OP(op_type, _equation)                     \
  struct _##op_type##Comment {                                             \
    static char type[];                                                    \
    static char equation[];                                                \
  };                                                                       \
  char _##op_type##Comment::type[]{#op_type};                              \
  char _##op_type##Comment::equation[]{_equation};                         \
  REGISTER_OPERATOR(                                                       \
      op_type, ::paddle::operators::LogicalOp,                             \
      ::paddle::operators::BinaryLogicalOpProtoMaker<_##op_type##Comment>, \
      ::paddle::operators::BinaryLogicalOpInferShape<_##op_type##Comment>, \
      ::paddle::framework::EmptyGradOpMaker);

#define REGISTER_UNARY_LOGICAL_OP(op_type, _equation)                     \
  struct _##op_type##Comment {                                            \
    static char type[];                                                   \
    static char equation[];                                               \
  };                                                                      \
  char _##op_type##Comment::type[]{#op_type};                             \
  char _##op_type##Comment::equation[]{_equation};                        \
  REGISTER_OPERATOR(                                                      \
      op_type, ::paddle::operators::LogicalOp,                            \
      ::paddle::operators::UnaryLogicalOpProtoMaker<_##op_type##Comment>, \
      ::paddle::operators::UnaryLogicalOpInferShape<_##op_type##Comment>, \
      ::paddle::framework::EmptyGradOpMaker);

140
REGISTER_BINARY_LOGICAL_OP(logical_and, "$$Out = X \\&\\& Y$$");
141 142
REGISTER_BINARY_LOGICAL_KERNEL(logical_and, CPU,
                               paddle::operators::LogicalAndFunctor);
143
REGISTER_BINARY_LOGICAL_OP(logical_or, "$$Out = X || Y$$");
144 145
REGISTER_BINARY_LOGICAL_KERNEL(logical_or, CPU,
                               paddle::operators::LogicalOrFunctor);
146
REGISTER_UNARY_LOGICAL_OP(logical_not, "$$Out = !X$$");
147 148
REGISTER_UNARY_LOGICAL_KERNEL(logical_not, CPU,
                              paddle::operators::LogicalNotFunctor);
149 150
REGISTER_BINARY_LOGICAL_OP(logical_xor,
                           "$$Out = (X || Y) \\, \\&\\& \\, !(X \\&\\& Y)$$");
151 152
REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, CPU,
                               paddle::operators::LogicalXorFunctor);