cos_sim_op.h 5.9 KB
Newer Older
X
Xinghai Sun 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14 15 16 17 18 19 20 21 22 23 24 25

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
Q
qijun 已提交
26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
X
Xinghai Sun 已提交
29

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
31
class CosSimKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
32 33
 public:
  void Compute(const framework::ExecutionContext& context) const override {
34 35 36 37 38 39 40 41 42
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* out_z = context.Output<Tensor>("Out");
    auto* out_x_norm = context.Output<Tensor>("XNorm");
    auto* out_y_norm = context.Output<Tensor>("YNorm");
    out_z->mutable_data<T>(context.GetPlace());
    out_x_norm->mutable_data<T>(context.GetPlace());
    out_y_norm->mutable_data<T>(context.GetPlace());
X
Xinghai Sun 已提交
43

44 45 46
    // convert Tensor to Eigen Tensor
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
47 48
    auto x = EigenMatrix<T>::Reshape(*in_x, 1);
    auto y = EigenMatrix<T>::Reshape(*in_y, 1);
49 50 51
    auto z = EigenVector<T>::Flatten(*out_z);
    auto x_norm = EigenVector<T>::Flatten(*out_x_norm);
    auto y_norm = EigenVector<T>::Flatten(*out_y_norm);
X
Xinghai Sun 已提交
52

53
    // compute
Q
QI JUN 已提交
54 55
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
56 57 58
    auto row_along = Eigen::array<int, 1>({{1}});
    x_norm.device(place) = x.square().sum(row_along).sqrt();
    y_norm.device(place) = y.square().sum(row_along).sqrt();
59
    if (rows_x == rows_y) {
F
fengjiayi 已提交
60
      auto xy = (x * y).sum(Eigen::array<int, 1>({{1}}));
61 62 63
      z.device(place) = xy / x_norm / y_norm;
    } else {
      Eigen::DSizes<int, 2> bcast(rows_x, 1);
64
      auto xy = (x * y.broadcast(bcast)).sum(row_along);
65 66
      z.device(place) = xy / x_norm / y_norm.broadcast(bcast);
    }
X
Xinghai Sun 已提交
67 68 69
  }
};

Q
QI JUN 已提交
70
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
71
class CosSimGradKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
72 73
 public:
  void Compute(const framework::ExecutionContext& context) const override {
74 75 76 77 78 79 80 81 82
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* in_z = context.Input<Tensor>("Out");
    auto* in_x_norm = context.Input<Tensor>("XNorm");
    auto* in_y_norm = context.Input<Tensor>("YNorm");
    auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
    auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
83

84
    // convert Tensor to Eigen Tensor
85 86
    auto x = EigenMatrix<T>::Reshape(*in_x, 1);
    auto y = EigenMatrix<T>::Reshape(*in_y, 1);
87 88 89 90
    auto z = EigenMatrix<T>::Reshape(*in_z, 1);
    auto x_norm = EigenMatrix<T>::Reshape(*in_x_norm, 1);
    auto y_norm = EigenMatrix<T>::Reshape(*in_y_norm, 1);
    auto dz = EigenMatrix<T>::Reshape(*in_grad_z, 1);
X
Xinghai Sun 已提交
91

92
    // compute gradident
93 94 95 96 97 98 99
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
    int cols = framework::product(in_x->dims()) / rows_x;
    Eigen::DSizes<int, 2> bcast_cols(1, cols);
    auto z_bcast = z.broadcast(bcast_cols);
    auto dz_bcast = dz.broadcast(bcast_cols);
    auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols);
Q
QI JUN 已提交
100 101
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
102
    if (rows_x == rows_y) {
103 104
      auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols);
      auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols);
105 106 107
      // compute dx
      if (out_grad_x) {
        out_grad_x->mutable_data<T>(context.GetPlace());
108
        auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
109 110 111 112 113 114
        auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
        dx.device(place) = dz_bcast * grad;
      }
      // compute dy
      if (out_grad_y) {
        out_grad_y->mutable_data<T>(context.GetPlace());
115 116
        auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
        auto grad = x / norm_prod_bcast - z_bcast * y / y_snorm_bcast;
117 118 119
        dy.device(place) = dz_bcast * grad;
      }
    } else {
120
      Eigen::DSizes<int, 2> bcast_rows(rows_x, 1);
121
      Eigen::DSizes<int, 2> bcast_rows_cols(rows_x, cols);
122 123
      auto y_bcast = y.broadcast(bcast_rows);
      auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_rows_cols);
124 125 126
      auto norm_prod_bcast = (x_norm * y_norm.eval().broadcast(bcast_rows))
                                 .eval()
                                 .broadcast(bcast_cols);
127 128 129
      // compute dx
      if (out_grad_x) {
        out_grad_x->mutable_data<T>(context.GetPlace());
130
        auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
131 132 133 134 135 136
        auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
        dx.device(place) = dz_bcast * grad;
      }
      // compute dy
      if (out_grad_y) {
        out_grad_y->mutable_data<T>(context.GetPlace());
D
dangqingqing 已提交
137
        auto dy = EigenVector<T>::Flatten(*out_grad_y);
138
        auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast;
F
fengjiayi 已提交
139
        dy.device(place) = (dz_bcast * grad).sum(Eigen::array<int, 1>({{0}}));
140
      }
141
    }
X
Xinghai Sun 已提交
142 143 144 145 146
  }
};

}  // namespace operators
}  // namespace paddle