test_normalization_wrapper.py 3.0 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
C
caoying03 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
C
caoying03 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
caoying03 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
import unittest
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import numpy as np


class TestNormalization(unittest.TestCase):
    data_desc = {"name": "input", "shape": (2, 3, 7)}

    def gen_random_input(self):
        """Generate random input data.
        """
        self.data = np.random.random(
            size=self.data_desc["shape"]).astype("float32")

    def set_program(self, axis, epsilon):
        """Build the test program.
        """
        data = fluid.layers.data(
            name=self.data_desc["name"],
            shape=self.data_desc["shape"],
            dtype="float32",
            append_batch_size=False)
        data.stop_gradient = False
        l2_norm = fluid.layers.l2_normalize(x=data, axis=axis, epsilon=epsilon)
        out = fluid.layers.reduce_sum(l2_norm, dim=None)

        fluid.backward.append_backward(loss=out)
        self.fetch_list = [l2_norm]

    def run_program(self):
        """Run the test program.
        """
        places = [core.CPUPlace()]
        if core.is_compile_gpu():
            places.append(core.CUDAPlace(0))

        for place in places:
            self.set_inputs(place)
            exe = fluid.Executor(place)

            output = exe.run(fluid.default_main_program(),
                             feed=self.inputs,
                             fetch_list=self.fetch_list,
                             return_numpy=True)
            self.op_output = output

    def set_inputs(self, place):
        """Set the randomly generated data to the test program.
        """
        self.inputs = {}
        tensor = fluid.Tensor()
        tensor.set(self.data, place)
        self.inputs[self.data_desc["name"]] = tensor

    def l2_normalize(self, data, axis, epsilon):
        """ Compute the groundtruth.
        """
        output = data * np.reciprocal(
            np.sum(np.square(data), axis=axis, keepdims=True))
        return output

    def test_l2_normalize(self):
        """ Test the python wrapper for l2_normalize.
        """
        axis = 1
        #TODO(caoying) epsilon is not supported due to lack of a maximum_op.
        epsilon = 1e-6

        self.gen_random_input()

        self.set_program(axis, epsilon)
        self.run_program()

        expect_output = self.l2_normalize(self.data, axis, epsilon)

        # check output
        self.assertTrue(np.allclose(self.op_output, expect_output, atol=0.001))


if __name__ == '__main__':
    unittest.main()