googlenet_multi_gpu.py 15.3 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dangqingqing 已提交
15 16 17 18 19 20 21 22 23 24 25
from six.moves import xrange  # pylint: disable=redefined-builtin
from datetime import datetime
import math
import re
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

26 27
tf.app.flags.DEFINE_integer('batch_size', 64, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
D
dangqingqing 已提交
28 29 30 31 32 33 34 35
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)

tf.app.flags.DEFINE_string('train_dir', '/train_model',
                           """Directory where to write event logs """
                           """and checkpoint.""")
36
tf.app.flags.DEFINE_integer('num_gpus', 4, """How many GPUs to use.""")
D
dangqingqing 已提交
37 38 39
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

40 41 42
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
NUM_EPOCHS_PER_DECAY = 50
INITIAL_LEARNING_RATE = 0.1
D
dangqingqing 已提交
43 44 45 46 47 48
LEARNING_RATE_DECAY_FACTOR = 0.1
TOWER_NAME = 'tower'


def _conv(name, inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.005):
    with tf.name_scope(name) as scope:
49 50 51 52 53
        kernel = tf.get_variable(
            name + '_w', [kH, kW, nIn, nOut],
            initializer=tf.truncated_normal_initializer(
                stddev=0.01, dtype=tf.float32),
            dtype=tf.float32)
D
dangqingqing 已提交
54 55 56 57 58 59

        if wd is not None:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
60
            strides = [1, 1, dH, dW]
D
dangqingqing 已提交
61
        else:
62 63 64 65 66 67 68 69 70 71 72 73 74
            strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(
            inpOp,
            kernel,
            strides,
            padding=padType,
            data_format=FLAGS.data_format)

        biases = tf.get_variable(
            name=name + '_b',
            shape=[nOut],
            initializer=tf.constant_initializer(
                value=0.0, dtype=tf.float32),
D
dangqingqing 已提交
75 76 77
            dtype=tf.float32)

        bias = tf.reshape(
78 79
            tf.nn.bias_add(
                conv, biases, data_format=FLAGS.data_format),
D
dangqingqing 已提交
80 81 82 83 84
            conv.get_shape())

        conv1 = tf.nn.relu(bias, name=scope)
        return conv1

85

D
dangqingqing 已提交
86 87
def _affine(name, inpOp, nIn, nOut, wd=0.005, act=True):
    with tf.name_scope(name) as scope:
88 89 90 91
        kernel = tf.get_variable(
            name + '_w', [nIn, nOut],
            initializer=tf.truncated_normal_initializer(
                stddev=0.01, dtype=tf.float32),
D
dangqingqing 已提交
92 93 94 95 96 97
            dtype=tf.float32)

        if wd is not None:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

98 99 100 101 102 103
        biases = tf.get_variable(
            name + '_b', [nOut],
            initializer=tf.constant_initializer(
                value=0.0, dtype=tf.float32),
            dtype=tf.float32,
            trainable=True)
D
dangqingqing 已提交
104 105 106 107 108 109

        affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
                  tf.matmul(inpOp, kernel) + biases

        return affine1

110

D
dangqingqing 已提交
111 112
def _mpool(name, inpOp, kH, kW, dH, dW, padding):
    if FLAGS.data_format == 'NCHW':
113 114
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
115
    else:
116 117 118 119 120 121 122 123 124 125
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.max_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
126 127 128

def _apool(name, inpOp, kH, kW, dH, dW, padding):
    if FLAGS.data_format == 'NCHW':
129 130
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
131
    else:
132 133 134 135 136 137 138 139 140 141
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.avg_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding=padding,
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
142 143 144 145

def loss(logits, labels):
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
146
        logits, labels, name='cross_entropy_per_example')
D
dangqingqing 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')


def get_incoming_shape(incoming):
    """ Returns the incoming data shape """
    if isinstance(incoming, tf.Tensor):
        return incoming.get_shape().as_list()
    elif type(incoming) in [np.array, list, tuple]:
        return np.shape(incoming)
    else:
        raise Exception("Invalid incoming layer.")


def _inception(name, inp, inSize, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2):
166
    conv1 = _conv(name + '_1', inp, inSize, o1s, 1, 1, 1, 1, 'VALID')
D
dangqingqing 已提交
167 168 169 170 171 172 173 174 175 176 177

    conv3_ = _conv(name + '_3r', inp, inSize, o2s1, 1, 1, 1, 1, 'VALID')
    conv3 = _conv(name + '_3', conv3_, o2s1, o2s2, 3, 3, 1, 1, 'SAME')

    conv5_ = _conv(name + '_5r', inp, inSize, o3s1, 1, 1, 1, 1, 'VALID')
    conv5 = _conv(name + '5', conv5_, o3s1, o3s2, 5, 5, 1, 1, 'SAME')

    pool_ = _mpool(name + 'pool', inp, o4s1, o4s1, 1, 1, 'SAME')
    pool = _conv(name + 'proj', pool_, inSize, o4s2, 1, 1, 1, 1, 'VALID')

    if FLAGS.data_format == 'NCHW':
178
        channel_dim = 1
D
dangqingqing 已提交
179
    else:
180
        channel_dim = 3
D
dangqingqing 已提交
181 182 183 184 185 186
    incept = tf.concat(channel_dim, [conv1, conv3, conv5, pool])
    return incept


def inference(images):
    # stage 1
187 188
    conv1 = _conv('conv1', images, 3, 64, 7, 7, 2, 2, 'SAME')
    pool1 = _mpool('pool1', conv1, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
189 190

    # stage 2
191 192 193
    conv2 = _conv('conv2', pool1, 64, 64, 1, 1, 1, 1, 'VALID')
    conv3 = _conv('conv3', conv2, 64, 192, 3, 3, 1, 1, 'SAME')
    pool3 = _mpool('pool3', conv3, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
194 195

    # stage 3
196
    incept3a = _inception('ince3a', pool3, 192, 64, 96, 128, 16, 32, 3, 32)
D
dangqingqing 已提交
197
    incept3b = _inception('ince3b', incept3a, 256, 128, 128, 192, 32, 96, 3, 64)
198
    pool4 = _mpool('pool4', incept3b, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
199 200

    # stage 4
201
    incept4a = _inception('ince4a', pool4, 480, 192, 96, 208, 16, 48, 3, 64)
D
dangqingqing 已提交
202 203 204
    incept4b = _inception('ince4b', incept4a, 512, 160, 112, 224, 24, 64, 3, 64)
    incept4c = _inception('ince4c', incept4b, 512, 128, 128, 256, 24, 64, 3, 64)
    incept4d = _inception('ince4d', incept4c, 512, 112, 144, 288, 32, 64, 3, 64)
205 206 207
    incept4e = _inception('ince4e', incept4d, 528, 256, 160, 320, 32, 128, 3,
                          128)
    pool5 = _mpool('pool5', incept4e, 3, 3, 2, 2, 'SAME')
D
dangqingqing 已提交
208 209

    # stage 5
210 211 212 213
    incept5a = _inception('ince5a', pool5, 832, 256, 160, 320, 32, 128, 3, 128)
    incept5b = _inception('ince5b', incept5a, 832, 384, 192, 384, 48, 128, 3,
                          128)
    pool6 = _apool('pool6', incept5b, 7, 7, 1, 1, 'VALID')
D
dangqingqing 已提交
214 215 216 217 218 219 220 221

    # output 1
    resh1 = tf.reshape(pool6, [-1, 1024])
    drop = tf.nn.dropout(resh1, 0.4)
    affn1 = _affine('fc_out', resh1, 1024, 1000, act=False)

    return affn1

222

D
dangqingqing 已提交
223 224 225 226 227 228 229 230 231 232 233 234
def tower_loss(scope):
    """Calculate the total loss on a single tower running the model.
    Args:
        scope: unique prefix string identifying the tower, e.g. 'tower_0'
    Returns:
        Tensor of shape [] containing the total loss for a batch of data
    """
    image_size = 224
    if FLAGS.data_format == 'NCHW':
        image_shape = [FLAGS.batch_size, 3, image_size, image_size]
    else:
        image_shape = [FLAGS.batch_size, image_size, image_size, 3]
235 236 237 238 239 240 241 242 243 244 245 246 247
    images = tf.get_variable(
        'image',
        image_shape,
        initializer=tf.truncated_normal_initializer(
            stddev=0.1, dtype=tf.float32),
        dtype=tf.float32,
        trainable=False)

    labels = tf.get_variable(
        'label', [FLAGS.batch_size],
        initializer=tf.constant_initializer(1),
        dtype=tf.int32,
        trainable=False)
D
dangqingqing 已提交
248 249 250 251 252 253 254 255

    # Build a Graph that computes the logits predictions from the
    # inference model.
    last_layer = inference(images)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = loss(last_layer, labels)
256

D
dangqingqing 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', l.op.name)
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
275
        tf.scalar_summary(loss_name + ' (raw)', l)
D
dangqingqing 已提交
276 277 278 279 280 281 282 283
        tf.scalar_summary(loss_name, loss_averages.average(l))

    with tf.control_dependencies([loss_averages_op]):
        total_loss = tf.identity(total_loss)
    return total_loss


def average_gradients(tower_grads):
284
    """Calculate the average gradient for each shared variable across all towers.
D
dangqingqing 已提交
285 286 287 288 289 290 291 292 293
  Note that this function provides a synchronization point across all towers.
  Args:
    tower_grads: List of lists of (gradient, variable) tuples. The outer list
      is over individual gradients. The inner list is over the gradient
      calculation for each tower.
  Returns:
     List of pairs of (gradient, variable) where the gradient has been averaged
     across all towers.
  """
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    average_grads = []
    for grad_and_vars in zip(*tower_grads):
        # Note that each grad_and_vars looks like the following:
        #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
        grads = []
        for g, _ in grad_and_vars:
            # Add 0 dimension to the gradients to represent the tower.
            expanded_g = tf.expand_dims(g, 0)

            # Append on a 'tower' dimension which we will average over below.
            grads.append(expanded_g)

        # Average over the 'tower' dimension.
        grad = tf.concat(0, grads)
        grad = tf.reduce_mean(grad, 0)

        # Keep in mind that the Variables are redundant because they are shared
        # across towers. So .. we will just return the first tower's pointer to
        # the Variable.
        v = grad_and_vars[0][1]
        grad_and_var = (grad, v)
        average_grads.append(grad_and_var)
    return average_grads

D
dangqingqing 已提交
318 319 320 321 322 323

def time_tensorflow_run(session, target):
    num_steps_burn_in = 50
    total_duration = 0.0
    total_duration_squared = 0.0
    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        start_time = time.time()
        _, loss_value = session.run(target)
        duration = time.time() - start_time
        if i > num_steps_burn_in:
            if not i % 10:
                num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = duration

                format_str = (
                    '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                    'sec/batch batch_size = %d)')
                print(format_str %
                      (datetime.now(), i - num_steps_burn_in, loss_value,
                       duration, sec_per_batch, num_examples_per_step))

            total_duration += duration
            total_duration_squared += duration * duration
D
dangqingqing 已提交
342 343 344 345

    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
346
    print('%s: FwdBwd across %d steps, %.3f +/- %.3f sec / batch' %
D
dangqingqing 已提交
347 348
          (datetime.now(), FLAGS.num_batches, mn, sd))

349

D
dangqingqing 已提交
350
def run_benchmark():
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
    with tf.Graph().as_default(), tf.device('/cpu:0'):
        # Create a variable to count the number of train() calls. This equals the
        # number of batches processed * FLAGS.num_gpus.
        global_step = tf.get_variable(
            'global_step', [],
            initializer=tf.constant_initializer(0),
            trainable=False)

        # Calculate the learning rate schedule.
        num_batches_per_epoch = (NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
                                 FLAGS.batch_size)
        decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)

        # Decay the learning rate exponentially based on the number of steps.
        lr = tf.train.exponential_decay(
            INITIAL_LEARNING_RATE,
            global_step,
            decay_steps,
            LEARNING_RATE_DECAY_FACTOR,
            staircase=True)

        # Create an optimizer that performs gradient descent.
        opt = tf.train.MomentumOptimizer(lr, 0.9)

        # Calculate the gradients for each model tower.
        tower_grads = []
        for i in xrange(FLAGS.num_gpus):
            with tf.device('/gpu:%d' % i):
                with tf.name_scope('%s_%d' % (TOWER_NAME, i)) as scope:
                    # Calculate the loss for one tower of the model. This function
                    # constructs the entire model but shares the variables across
                    # all towers.
                    loss = tower_loss(scope)

                    # Reuse variables for the next tower.
                    tf.get_variable_scope().reuse_variables()

                    # Retain the summaries from the final tower.
                    summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)

                    # Calculate the gradients for the batch of data on this tower.
                    grads = opt.compute_gradients(loss)

                    # Keep track of the gradients across all towers.
                    tower_grads.append(grads)

        # We must calculate the mean of each gradient. Note that this is the
        # synchronization point across all towers.
        grads = average_gradients(tower_grads)

        # Apply the gradients to adjust the shared variables.
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

        # Group all updates to into a single train op.
        train_op = tf.group(apply_gradient_op)

        # Build an initialization operation.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph. allow_soft_placement must be set to
        # True to build towers on GPU, as some of the ops do not have GPU
        # implementations.
        sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)
        time_tensorflow_run(sess, [train_op, loss])
D
dangqingqing 已提交
418 419 420


def main(_):
421
    run_benchmark()
D
dangqingqing 已提交
422 423 424


if __name__ == '__main__':
425
    tf.app.run()