randperm_op.h 2.3 KB
Newer Older
C
cc 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <string>
#include <vector>
22
#include "paddle/fluid/framework/generator.h"
C
cc 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {

template <typename T>
static inline void random_permate(T* data_ptr, int num, unsigned int seed) {
  for (int i = 0; i < num; ++i) {
    data_ptr[i] = static_cast<T>(i);
  }
35 36 37 38 39 40 41 42 43 44
  if (framework::Generator::GetInstance()->is_init_py) {
    std::shuffle(data_ptr, data_ptr + num,
                 framework::Generator::GetInstance()->GetCPUEngine());

  } else {
    if (seed == 0) {
      seed = std::random_device()();
    }
    std::srand(seed);
    std::random_shuffle(data_ptr, data_ptr + num);
C
cc 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  }
}

template <typename DeviceContext, typename T>
class RandpermKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int n = ctx.Attr<int>("n");
    unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
    framework::Variable* out_var = ctx.OutputVar("Out");
    framework::Tensor* out_tensor =
        framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(out_var);

    if (platform::is_cpu_place(ctx.GetPlace())) {
      T* out_data = out_tensor->mutable_data<T>(platform::CPUPlace());
      random_permate<T>(out_data, n, seed);
61

C
cc 已提交
62 63 64 65 66 67 68 69 70 71 72 73
    } else {
      framework::Tensor tmp_tensor;
      tmp_tensor.Resize(framework::make_ddim({n}));
      T* tmp_data = tmp_tensor.mutable_data<T>(platform::CPUPlace());
      random_permate<T>(tmp_data, n, seed);
      framework::TensorCopy(tmp_tensor, platform::CUDAPlace(), out_tensor);
    }
  }
};

}  // namespace operators
}  // namespace paddle