api_impl.cc 10.3 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
26
#include "paddle/fluid/inference/api/helper.h"
27
#include "paddle/fluid/platform/cpu_helper.h"
28 29 30
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
31
DECLARE_int32(paddle_num_threads);
X
Xin Pan 已提交
32 33

namespace paddle {
34 35 36 37 38 39 40 41 42 43
namespace {
using paddle::inference::Timer;

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace
X
Xin Pan 已提交
44

45 46 47 48
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
49
      if (feeds_.size() <= static_cast<size_t>(idx)) {
50 51 52 53 54 55
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
56
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
57 58 59 60 61 62 63
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
64 65
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
66
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
67
#if !defined(_WIN32)
68 69 70 71 72 73 74 75
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
76
#endif
77

78 79 80
  // no matter with or without MKLDNN
  paddle::platform::SetNumThreads(FLAGS_paddle_num_threads);

Y
Yan Chunwei 已提交
81
  if (config_.use_gpu) {
X
Xin Pan 已提交
82 83 84 85
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
86 87 88
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
89
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
90 91 92 93
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }
94

X
Xin Pan 已提交
95
  executor_.reset(new paddle::framework::Executor(place_));
96

X
Xin Pan 已提交
97 98 99 100
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
101 102
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
103 104 105 106 107 108 109
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
Y
Yan Chunwei 已提交
110
    LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
X
Xin Pan 已提交
111 112
    return false;
  }
D
dzhwinter 已提交
113

X
Xin Pan 已提交
114
  ctx_ = executor_->Prepare(*inference_program_, 0);
115 116
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
117

X
Xin Pan 已提交
118
  // Get the feed_target_names and fetch_target_names
119
  PrepareFeedFetch();
X
Xin Pan 已提交
120 121 122
  return true;
}

123
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
124
#if !defined(_WIN32)
125 126 127 128
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
129
#endif
130 131 132
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
133
}
134

Y
Yan Chunwei 已提交
135
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
136 137
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
138
  VLOG(3) << "Predictor::predict";
X
Xin Pan 已提交
139 140 141
  Timer timer;
  timer.tic();
  // set feed variable
142
  std::vector<framework::LoDTensor> feeds;
143 144
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
145 146 147 148 149
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
150
  VLOG(4) << "Run prepared context";
151 152
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
153
                                false /* don't create variable each time */);
154
  VLOG(4) << "Finish prepared context";
155 156
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
157
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
158 159 160
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
161 162 163 164

  // Fix TensorArray reuse not cleaned bug.
  tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get());
  tensor_array_batch_cleaner_.ResetTensorArray();
X
Xin Pan 已提交
165 166 167
  return true;
}

Y
Yan Chunwei 已提交
168
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
169
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
170 171
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

172
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
173
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
174 175
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
176 177 178 179
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
180 181
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
182
#endif
X
Xin Pan 已提交
183 184
}

Y
Yan Chunwei 已提交
185
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
186
                                    framework::Scope *scope) {
187
  VLOG(3) << "Predictor::set_feed";
188
  if (inputs.size() != feeds_.size()) {
189 190
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
191 192
    return false;
  }
193
  for (size_t i = 0; i < inputs.size(); ++i) {
194 195
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
196 197
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
198
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
199
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
200
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
201 202 203 204 205 206
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
207
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
208
                inputs[i].data.length());
Y
Yan Chunwei 已提交
209 210 211 212 213 214
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
215 216
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
217
      idx = feed_names_[inputs[i].name];
218 219 220 221
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
222 223 224
  }
  return true;
}
L
luotao1 已提交
225 226 227
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
228 229 230 231 232 233 234 235 236 237 238 239 240 241
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
L
luotao1 已提交
242 243
  }
}
X
Xin Pan 已提交
244

245 246
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
247
  VLOG(3) << "Predictor::get_fetch";
248 249 250
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
251 252
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
253
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
254 255 256 257 258 259 260 261
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
262
    } else {
L
luotao1 已提交
263
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
264
    }
X
Xin Pan 已提交
265 266 267 268
  }
  return true;
}

269
template <>
270 271
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
272
  VLOG(3) << "create NativePaddlePredictor";
Y
Yan Chunwei 已提交
273 274
  if (config.use_gpu) {
    // 1. GPU memeroy
275
    PADDLE_ENFORCE_GT(
D
dzhwinter 已提交
276
        config.fraction_of_gpu_memory, 0.f,
277
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
278
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
279 280 281 282 283
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
284
                         num2str<float>(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
285
      flags.push_back(flag);
286
      VLOG(3) << "set flag: " << flag;
Y
Yan Chunwei 已提交
287 288
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
289
  }
290

Y
Yan Chunwei 已提交
291
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
292
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
293 294
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
295
#ifdef __clang__
J
Jiabin Yang 已提交
296
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
297 298
  return predictor;
#else
299
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
300
#endif
X
Xin Pan 已提交
301 302
}

Y
Yan Chunwei 已提交
303 304 305 306 307 308
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<NativeConfig>(
    const NativeConfig &config) {
  return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
}

X
Xin Pan 已提交
309
}  // namespace paddle