cost_model.py 2.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.static as static
import numpy as np
from paddle.fluid import core


class CostModel():
    def __init__(self):
        pass

    def build_program(self):
        paddle.enable_static()

        main_program = static.Program()
        startup_program = static.Program()
        with static.program_guard(
                main_program=main_program, startup_program=startup_program):
            data = paddle.static.data(
                name='X', shape=[None, 1], dtype='float32')
            hidden = paddle.static.nn.fc(data, 10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

        print("main program is: {}".format(main_program))
        #print("start up program is: {}".format(startup_program))

        return startup_program, main_program

    def profile_measure(self,
                        startup_program,
                        main_program,
                        device='gpu',
                        fetch_cost_list=['time', 'memory']):

        place = paddle.set_device('gpu')
        x = np.random.random(size=(10, 1)).astype('float32')
        exe = paddle.static.Executor(place)

        exe.run(startup_program)
        paddle.fluid.profiler.start_profiler("All")
        exe.run(main_program, feed={"X": x}, fetch_list=[])
        # core.CostModel.ProfileMeasure(main_program, device)
        print("core:<<<<<<<")

        cost_model = core.CostModel()
        cost_data = cost_model.ProfileMeasure(device)
        # cost_list = self.stop_cost_model()
        # return cost_list


cost_model = CostModel()

startup_program, main_program = cost_model.build_program()

cost_model.profile_measure(startup_program, main_program)