test_recognize_digits.py 8.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
16
import paddle.fluid as fluid
Y
Yang Yu 已提交
17 18
import paddle.v2 as paddle
import sys
Y
Yang Yu 已提交
19
import numpy
20
import unittest
21 22
import math
import sys
Y
Yang Yu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


def parse_arg():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "nn_type",
        help="The neural network type, in ['mlp', 'conv']",
        type=str,
        choices=['mlp', 'conv'])
    parser.add_argument(
        "--parallel",
        help='Run in parallel or not',
        default=False,
        action="store_true")
    parser.add_argument(
        "--use_cuda",
        help="Run the program by using CUDA",
        default=False,
        action="store_true")
    return parser.parse_args()


BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
51
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
52 53
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
Y
Yang Yang(Tony) 已提交
70
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
Y
Yang Yu 已提交
71 72 73 74 75 76 77 78 79 80
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


81
def train(nn_type, use_cuda, parallel, save_dirname, save_param_filename):
82 83
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
84 85 86
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

87
    if nn_type == 'mlp':
Y
Yang Yu 已提交
88 89 90 91
        net_conf = mlp
    else:
        net_conf = conv_net

92
    if parallel:
Y
Yang Yu 已提交
93 94 95 96 97
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
L
Liu Yiqun 已提交
98 99
            prediction, avg_loss, acc = net_conf(img_, label_)
            for o in [avg_loss, acc]:
Y
Yang Yu 已提交
100 101 102 103
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
Y
Yu Yang 已提交
104 105
        avg_loss = fluid.layers.mean(avg_loss)
        acc = fluid.layers.mean(acc)
Y
Yang Yu 已提交
106
    else:
L
Liu Yiqun 已提交
107
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
108

Y
Yang Yu 已提交
109 110
    test_program = fluid.default_main_program().clone()

Y
Yang Yu 已提交
111 112 113
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
    optimizer.minimize(avg_loss)

114
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
115 116 117 118 119 120 121 122

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
123 124
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
125 126 127 128 129
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

    PASS_NUM = 100
    for pass_id in range(PASS_NUM):
        for batch_id, data in enumerate(train_reader()):
Y
Yang Yu 已提交
130 131
            # train a mini-batch, fetch nothing
            exe.run(feed=feeder.feed(data))
Y
Yang Yu 已提交
132
            if (batch_id + 1) % 10 == 0:
Y
Yang Yu 已提交
133 134 135 136 137 138 139 140 141 142 143
                acc_set = []
                avg_loss_set = []
                for test_data in test_reader():
                    acc_np, avg_loss_np = exe.run(program=test_program,
                                                  feed=feeder.feed(test_data),
                                                  fetch_list=[acc, avg_loss])
                    acc_set.append(float(acc_np))
                    avg_loss_set.append(float(avg_loss_np))
                # get test acc and loss
                acc_val = numpy.array(acc_set).mean()
                avg_loss_val = numpy.array(avg_loss_set).mean()
144
                if float(acc_val) > 0.2:  # Smaller value to increase CI speed
L
Liu Yiqun 已提交
145
                    if save_dirname is not None:
146 147 148 149
                        fluid.io.save_inference_model(
                            save_dirname, ["img"], [prediction],
                            exe,
                            save_file_name=save_param_filename)
L
Liu Yiqun 已提交
150
                    return
Y
Yang Yu 已提交
151 152
                else:
                    print(
Y
Yang Yu 已提交
153
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
Y
Yang Yu 已提交
154
                        format(pass_id, batch_id + 1,
Y
Yang Yu 已提交
155
                               float(avg_loss_val), float(acc_val)))
156 157
                    if math.isnan(float(avg_loss_val)):
                        sys.exit("got NaN loss, training failed.")
158
    raise AssertionError("Loss of recognize digits is too large")
Y
Yang Yu 已提交
159 160


161
def infer(use_cuda, save_dirname=None, param_filename=None):
L
Liu Yiqun 已提交
162 163 164
    if save_dirname is None:
        return

165
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
166 167 168 169 170 171
    exe = fluid.Executor(place)

    # Use fluid.io.load_inference_model to obtain the inference program desc,
    # the feed_target_names (the names of variables that will be feeded 
    # data using feed operators), and the fetch_targets (variables that 
    # we want to obtain data from using fetch operators).
172 173
    [inference_program, feed_target_names, fetch_targets
     ] = fluid.io.load_inference_model(save_dirname, exe, param_filename)
L
Liu Yiqun 已提交
174

175
    # The input's dimension of conv should be 4-D or 5-D.
176
    # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
177
    batch_size = 1
178
    tensor_img = numpy.random.uniform(-1.0, 1.0,
179
                                      [batch_size, 1, 28, 28]).astype("float32")
L
Liu Yiqun 已提交
180 181 182 183 184 185 186 187 188

    # Construct feed as a dictionary of {feed_target_name: feed_target_data}
    # and results will contain a list of data corresponding to fetch_targets.
    results = exe.run(inference_program,
                      feed={feed_target_names[0]: tensor_img},
                      fetch_list=fetch_targets)
    print("infer results: ", results[0])


189
def main(use_cuda, parallel, nn_type, combine):
190 191
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
192 193 194
        save_filename = None
        if combine == True:
            save_filename = "__params_combined__"
L
Liu Yiqun 已提交
195 196
    else:
        save_dirname = None
197
        save_filename = None
198 199 200 201 202

    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
203 204 205 206 207 208
        save_dirname=save_dirname,
        save_param_filename=save_filename)
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
        param_filename=save_filename)
209 210 211 212 213 214


class TestRecognizeDigits(unittest.TestCase):
    pass


215
def inject_test_method(use_cuda, parallel, nn_type, combine):
216 217 218 219 220 221
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
222
                main(use_cuda, parallel, nn_type, combine)
223

224 225 226 227
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
                                       if use_cuda else 'cpu', 'parallel'
                                       if parallel else 'normal', 'combine'
                                       if combine else 'separate')
228 229 230 231 232 233 234 235

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
        for parallel in (False, True):
            for nn_type in ('mlp', 'conv'):
236 237
                inject_test_method(use_cuda, parallel, nn_type, True)

238
    # Two unit-test for saving parameters as separate files
239
    inject_test_method(False, False, 'mlp', False)
240
    inject_test_method(False, False, 'conv', False)
241 242 243 244 245 246


inject_all_tests()

if __name__ == '__main__':
    unittest.main()