test_fit_a_line.py 4.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
QI JUN 已提交
15
import paddle.v2 as paddle
16
import paddle.fluid as fluid
Y
Yang Yu 已提交
17
import contextlib
18
import numpy
Y
Yang Yu 已提交
19
import unittest
20 21
import math
import sys
Q
QI JUN 已提交
22 23


24
def train(use_cuda, save_dirname):
Y
Yang Yu 已提交
25
    x = fluid.layers.data(name='x', shape=[13], dtype='float32')
Q
QI JUN 已提交
26

Y
Yang Yu 已提交
27
    y_predict = fluid.layers.fc(input=x, size=1, act=None)
Q
QI JUN 已提交
28

Y
Yang Yu 已提交
29
    y = fluid.layers.data(name='y', shape=[1], dtype='float32')
Q
QI JUN 已提交
30

Y
Yang Yu 已提交
31
    cost = fluid.layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
32
    avg_cost = fluid.layers.mean(cost)
Q
QI JUN 已提交
33

Y
Yang Yu 已提交
34 35
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
    sgd_optimizer.minimize(avg_cost)
Q
QI JUN 已提交
36

Y
Yang Yu 已提交
37
    BATCH_SIZE = 20
Q
QI JUN 已提交
38

Y
Yang Yu 已提交
39 40 41 42
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.uci_housing.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Q
QI JUN 已提交
43

Y
Yang Yu 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
    exe = fluid.Executor(place)

    exe.run(fluid.default_startup_program())

    PASS_NUM = 100
    for pass_id in range(PASS_NUM):
        for data in train_reader():
            avg_loss_value, = exe.run(fluid.default_main_program(),
                                      feed=feeder.feed(data),
                                      fetch_list=[avg_cost])
            print(avg_loss_value)
            if avg_loss_value[0] < 10.0:
58 59 60
                if save_dirname is not None:
                    fluid.io.save_inference_model(save_dirname, ['x'],
                                                  [y_predict], exe)
Y
Yang Yu 已提交
61
                return
62 63
            if math.isnan(float(avg_loss_value)):
                sys.exit("got NaN loss, training failed.")
Y
Yang Yu 已提交
64 65 66 67
    raise AssertionError("Fit a line cost is too large, {0:2.2}".format(
        avg_loss_value[0]))


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # Use fluid.io.load_inference_model to obtain the inference program desc,
    # the feed_target_names (the names of variables that will be feeded 
    # data using feed operators), and the fetch_targets (variables that 
    # we want to obtain data from using fetch operators).
    [inference_program, feed_target_names,
     fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

    # The input's dimension should be 2-D and the second dim is 13
    # The input data should be >= 0
    batch_size = 10
    tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
    assert feed_target_names[0] == 'x'
    results = exe.run(inference_program,
                      feed={feed_target_names[0]: tensor_x},
                      fetch_list=fetch_targets)
    print("infer shape: ", results[0].shape)
    print("infer results: ", results[0])


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "fit_a_line.inference.model"

    train(use_cuda, save_dirname)
    infer(use_cuda, save_dirname)


Y
Yang Yu 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
class TestFitALine(unittest.TestCase):
    def test_cpu(self):
        with self.program_scope_guard():
            main(use_cuda=False)

    def test_cuda(self):
        with self.program_scope_guard():
            main(use_cuda=True)

    @contextlib.contextmanager
    def program_scope_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()