recv_save_op.cc 12.1 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <stdint.h>
#include <fstream>
#include <numeric>
#include <string>
#include <vector>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/framework/version.h"
29
#include "paddle/fluid/operators/distributed/communicator_common.h"
T
tangwei12 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/string/string_helper.h"

namespace paddle {
namespace operators {
class RecvSaveOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::proto::VarType::Type(ctx.Attr<int>("dtype")),
C
Chengmo 已提交
47
        platform::CPUPlace());
T
tangwei12 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  }
};

class RecvSaveOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddComment(R"DOC(
Recv Save operator

This operator will serialize and write LoDTensor variable to file on disk.
)DOC");
    AddAttr<int>("dtype",
                 "(int, default 5 (FP32)) "
                 "Output data type")
        .SetDefault(framework::proto::VarType::FP32);

    AddAttr<bool>("overwrite",
                  "(boolean, default true)"
                  "Overwrite the output file if exist")
        .SetDefault(true);

    AddAttr<std::string>("file_path",
                         "(string)"
                         "The \"file_path\" where the variable will be saved.")
        .AddCustomChecker(
            [](const std::string &path) { return !path.empty(); });

    AddAttr<std::vector<int64_t>>("shape",
                                  "(vector<int64_t>) The shape of the output")
        .SetDefault({});

    AddAttr<std::vector<std::string>>(
        "slice_varnames",
        "(string vector, default {}) "
        "sometimes we need to put received var in another name "
        "for example: we need var named 'moment_1@127.0.0.1:1001', "
        "and it real name on parameter server is 'moment_1'. ")
        .SetDefault({});

    AddAttr<std::vector<std::string>>(
        "remote_varnames",
        "(string vector, default {}) "
        "sometimes we need to put received var in another name "
        "for example: we need var named 'moment_1@127.0.0.1:1001', "
        "and it real name on parameter server is 'moment_1'. ")
        .SetDefault({});

    AddAttr<std::vector<std::string>>("slice_shapes",
                                      "(vector<int>) "
                                      "the length of each output along the "
                                      "specified axis.")
        .SetDefault({});

    AddAttr<std::vector<std::string>>("endpoints",
                                      "(string vector, default 127.0.0.1:6164)"
                                      "Server endpoints in the order of input "
                                      "variables for mapping")
        .SetDefault({});

    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
108 109 110 111
    AddAttr<bool>("is_sparse", "sparse or dense param");
    AddAttr<int>("pserver_num", "the number of pserver").SetDefault(0);
    AddAttr<bool>("is_distributed", "sparse id range [0, N) or [0, INT64]")
        .SetDefault(false);
T
tangwei12 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  }
};

template <typename DeviceContext, typename T>
class RecvSaveOpKernel : public framework::OpKernel<T> {
 private:
  void SerializeVersionToStream(std::ostream &os) const {
    {  // the 1st field, uint32_t version for LoDTensor
      os.write(reinterpret_cast<const char *>(&framework::kCurTensorVersion),
               sizeof(framework::kCurTensorVersion));
    }
    // the 2st field, LoD information
    // in this scene, skip LoD information.
    uint64_t size = 0;
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));
  }

  void SerializeTensorHeaderToStream(
      std::ostream &os, const framework::proto::VarType::Type &type,
      const framework::DDim &dims) const {
    {  // the 1st field, uint32_t version
      constexpr uint32_t version = 0;
      os.write(reinterpret_cast<const char *>(&version), sizeof(version));
    }
    {  // the 2nd field, tensor description
      // int32_t  size
      // void*    protobuf message
      framework::proto::VarType::TensorDesc desc;
      desc.set_data_type(type);
      auto tensor_dims = framework::vectorize(dims);
      auto *pb_dims = desc.mutable_dims();
      pb_dims->Resize(static_cast<int>(tensor_dims.size()), 0);
      std::copy(tensor_dims.begin(), tensor_dims.end(), pb_dims->begin());
      int32_t size = desc.ByteSize();
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      auto out = desc.SerializeAsString();
      os.write(out.data(), size);
    }
  }

  void SerializeTensorAppendToStream(std::ostream &os,
                                     const framework::Tensor &tensor) const {
    uint64_t size = tensor.numel() * framework::SizeOfType(tensor.type());
    auto *data_ptr = tensor.data<void>();

    PADDLE_ENFORCE_LT(size, std::numeric_limits<std::streamsize>::max(),
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
    os.write(static_cast<const char *>(data_ptr),
             static_cast<std::streamsize>(size));
  }

 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto filename = ctx.Attr<std::string>("file_path");
    auto overwrite = ctx.Attr<bool>("overwrite");

    if (FileExists(filename) && !overwrite) {
170 171
      PADDLE_THROW(platform::errors::AlreadyExists(
          "%s is existed, cannot save to it when overwrite=false", filename));
T
tangwei12 已提交
172 173 174 175 176 177 178 179 180 181 182
    }

    MkDirRecursively(DirName(filename).c_str());

    auto origin_shape = ctx.Attr<std::vector<int64_t>>("shape");
    auto slice_shapes = ctx.Attr<std::vector<std::string>>("slice_shapes");
    auto slice_varnames = ctx.Attr<std::vector<std::string>>("slice_varnames");
    auto remote_varnames =
        ctx.Attr<std::vector<std::string>>("remote_varnames");
    auto endpoints = ctx.Attr<std::vector<std::string>>("endpoints");

183 184 185 186 187
    auto trainer_id = ctx.Attr<int>("trainer_id");
    auto is_sparse = ctx.Attr<bool>("is_sparse");
    auto pserver_num = ctx.Attr<int>("pserver_num");
    // auto is_distributed = ctx.Attr<int>("is_distributed");

T
tangwei12 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    PADDLE_ENFORCE_EQ(slice_shapes.size(), slice_varnames.size(),
                      platform::errors::InvalidArgument(
                          "Expected attr len(slice_shapes) must be equal to "
                          "len(slice_varnames)"));

    PADDLE_ENFORCE_EQ(
        slice_shapes.size(), endpoints.size(),
        platform::errors::InvalidArgument(
            "Expected attr len(slice_shapes) must be equal to len(endpoints)"));

    auto data_type =
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));

    // it to save an output stream.
    std::ofstream fout(filename, std::ios::binary);
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fout), true,
        platform::errors::NotFound("Cannot open %s to write", filename));

    SerializeVersionToStream(fout);
    SerializeTensorHeaderToStream(fout, data_type,
                                  framework::make_ddim(origin_shape));

    framework::Scope &local_scope = ctx.scope().NewScope();
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
213
    auto place = ctx.GetPlace();
T
tangwei12 已提交
214 215 216 217 218
    auto &device_ctx = *pool.Get(place);

    distributed::RPCClient *rpc_client =
        distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id);

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    if (!is_sparse) {
      for (size_t i = 0; i < slice_varnames.size(); i++) {
        auto &varname = slice_varnames[i];
        auto *var = local_scope.Var(varname);
        auto *tensor = var->GetMutable<framework::LoDTensor>();

        auto slice_string =
            string::split_string<std::string>(slice_shapes[i], ",");
        std::vector<int64_t> slice_shape;

        for (auto &dim : slice_string) {
          slice_shape.push_back(static_cast<int64_t>(std::stoull(dim)));
        }

        tensor->Resize(framework::make_ddim(slice_shape));

        distributed::VarHandlePtr ret;

        ret = rpc_client->AsyncGetVarNoBarrier(
            endpoints[i], device_ctx, local_scope, remote_varnames[i], varname);
T
tangwei12 已提交
239

240 241 242 243
        PADDLE_ENFORCE_NE(
            ret->Wait(), 0U,
            platform::errors::ExecutionTimeout(
                "rpc error when communication with %s", endpoints[i]));
T
tangwei12 已提交
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        auto &c_tensor = var->Get<framework::LoDTensor>();

        SerializeTensorAppendToStream(fout, c_tensor);
        local_scope.EraseVars({varname});
      }
    } else {
      PADDLE_ENFORCE_GT(
          pserver_num, 0,
          platform::errors::InvalidArgument(
              "Expected attr len(pserver_num) must gather than 0"));

      std::vector<std::string> varnames;
      auto *var = local_scope.Var("tmp_for_sparse_merge");
      auto *o_t = var->GetMutable<framework::LoDTensor>();
      o_t->Resize(framework::make_ddim(origin_shape));
      auto *out_d = o_t->mutable_data<float>(place);

      varnames.push_back("tmp_for_sparse_merge");
      for (size_t i = 0; i < slice_varnames.size(); i++) {
        varnames.push_back(slice_varnames[i]);
T
tangwei12 已提交
265 266
      }

267
      std::vector<const float *> tensors;
T
tangwei12 已提交
268

269 270 271 272
      for (size_t i = 0; i < slice_varnames.size(); i++) {
        auto &varname = slice_varnames[i];
        auto *local_var = local_scope.Var(varname);
        auto *tensor = local_var->GetMutable<framework::LoDTensor>();
T
tangwei12 已提交
273

274 275 276
        auto slice_string =
            string::split_string<std::string>(slice_shapes[i], ",");
        std::vector<int64_t> slice_shape;
T
tangwei12 已提交
277

278 279 280
        for (auto &dim : slice_string) {
          slice_shape.push_back(static_cast<int64_t>(std::stoull(dim)));
        }
T
tangwei12 已提交
281

282 283 284 285 286 287 288 289 290 291 292
        tensor->Resize(framework::make_ddim(slice_shape));

        distributed::VarHandlePtr ret;

        ret = rpc_client->AsyncGetVarNoBarrier(
            endpoints[i], device_ctx, local_scope, remote_varnames[i], varname);

        PADDLE_ENFORCE_NE(
            ret->Wait(), 0U,
            platform::errors::ExecutionTimeout(
                "rpc error when communication with %s", endpoints[i]));
T
tangwei12 已提交
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307
        const auto *value =
            local_var->Get<framework::LoDTensor>().data<float>();
        tensors.push_back(value);
      }

      auto dims1 = origin_shape[1];
      for (int j = 0; j < origin_shape[0]; ++j) {
        auto id = j % pserver_num;
        auto idx = j / pserver_num;
        std::memcpy(out_d + j * dims1, tensors[id] + idx * dims1,
                    sizeof(float) * dims1);
      }

      auto &c_tensor = var->Get<framework::LoDTensor>();
T
tangwei12 已提交
308
      SerializeTensorAppendToStream(fout, c_tensor);
309 310

      local_scope.EraseVars(varnames);
T
tangwei12 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    }

    fout.close();
    ctx.scope().DeleteScope(&local_scope);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(recv_save, ops::RecvSaveOp, ops::RecvSaveOpProtoMaker);

REGISTER_OP_CPU_KERNEL(
    recv_save, ops::RecvSaveOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::RecvSaveOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::RecvSaveOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::RecvSaveOpKernel<paddle::platform::CPUDeviceContext, int64_t>);