test_softmax_op.py 1.3 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Q
qijun 已提交
14 15
import unittest
import numpy as np
Q
qijun 已提交
16
from op_test import OpTest
Q
qijun 已提交
17 18 19 20


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
C
caoying03 已提交
21
    shiftx = x - np.max(x).clip(-64.)
Q
qijun 已提交
22 23 24 25
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


Q
qijun 已提交
26
class TestSoftmaxOp(OpTest):
Q
qijun 已提交
27
    def setUp(self):
Q
fix bug  
qijun 已提交
28
        self.op_type = "softmax"
Q
qijun 已提交
29 30 31
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [10, 10]).astype("float32")
        }
D
dangqingqing 已提交
32
        self.outputs = {
F
fengjiayi 已提交
33
            'Out': np.apply_along_axis(stable_softmax, 1, self.inputs['X'])
D
dangqingqing 已提交
34
        }
Q
qijun 已提交
35

Q
qijun 已提交
36 37
    def test_check_output(self):
        self.check_output()
Q
qijun 已提交
38

Q
qijun 已提交
39
    def test_check_grad(self):
F
fengjiayi 已提交
40
        self.check_grad(['X'], 'Out')
Q
Qiao Longfei 已提交
41 42


C
caoying03 已提交
43
if __name__ == "__main__":
Q
qijun 已提交
44
    unittest.main()