test_precision_recall_op.py 6.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
yangyaming 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
import unittest
import numpy as np
from op_test import OpTest


def calc_precision(tp_count, fp_count):
    if tp_count > 0.0 or fp_count > 0.0:
        return tp_count / (tp_count + fp_count)
    return 1.0


def calc_recall(tp_count, fn_count):
    if tp_count > 0.0 or fn_count > 0.0:
        return tp_count / (tp_count + fn_count)
    return 1.0


def calc_f1_score(precision, recall):
    if precision > 0.0 or recall > 0.0:
        return 2 * precision * recall / (precision + recall)
    return 0.0


Y
yangyaming 已提交
37 38
def get_states(idxs, labels, cls_num, weights=None):
    ins_num = idxs.shape[0]
Y
yangyaming 已提交
39
    # TP FP TN FN
Y
yangyaming 已提交
40
    states = np.zeros((cls_num, 4)).astype('float32')
Y
yangyaming 已提交
41 42
    for i in xrange(ins_num):
        w = weights[i] if weights is not None else 1.0
Y
yangyaming 已提交
43 44 45 46 47
        idx = idxs[i][0]
        label = labels[i][0]
        if idx == label:
            states[idx][0] += w
            for j in xrange(cls_num):
Y
yangyaming 已提交
48
                states[j][2] += w
Y
yangyaming 已提交
49
            states[idx][2] -= w
Y
yangyaming 已提交
50
        else:
Y
yangyaming 已提交
51 52 53
            states[label][3] += w
            states[idx][1] += w
            for j in xrange(cls_num):
Y
yangyaming 已提交
54
                states[j][2] += w
Y
yangyaming 已提交
55 56
            states[label][2] -= w
            states[idx][2] -= w
Y
yangyaming 已提交
57 58 59
    return states


Y
yangyaming 已提交
60
def compute_metrics(states, cls_num):
Y
yangyaming 已提交
61 62 63 64 65
    total_tp_count = 0.0
    total_fp_count = 0.0
    total_fn_count = 0.0
    macro_avg_precision = 0.0
    macro_avg_recall = 0.0
Y
yangyaming 已提交
66
    for i in xrange(cls_num):
Y
yangyaming 已提交
67 68 69 70 71 72
        total_tp_count += states[i][0]
        total_fp_count += states[i][1]
        total_fn_count += states[i][3]
        macro_avg_precision += calc_precision(states[i][0], states[i][1])
        macro_avg_recall += calc_recall(states[i][0], states[i][3])
    metrics = []
Y
yangyaming 已提交
73 74
    macro_avg_precision /= cls_num
    macro_avg_recall /= cls_num
Y
yangyaming 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    metrics.append(macro_avg_precision)
    metrics.append(macro_avg_recall)
    metrics.append(calc_f1_score(macro_avg_precision, macro_avg_recall))
    micro_avg_precision = calc_precision(total_tp_count, total_fp_count)
    metrics.append(micro_avg_precision)
    micro_avg_recall = calc_recall(total_tp_count, total_fn_count)
    metrics.append(micro_avg_recall)
    metrics.append(calc_f1_score(micro_avg_precision, micro_avg_recall))
    return np.array(metrics).astype('float32')


class TestPrecisionRecallOp_0(OpTest):
    def setUp(self):
        self.op_type = "precision_recall"
        ins_num = 64
Y
yangyaming 已提交
90 91 92
        cls_num = 10
        max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
        idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
Y
yangyaming 已提交
93
            (ins_num, 1)).astype('int32')
Y
yangyaming 已提交
94 95 96 97 98 99
        labels = np.random.choice(xrange(cls_num), ins_num).reshape(
            (ins_num, 1)).astype('int32')
        states = get_states(idxs, labels, cls_num)
        metrics = compute_metrics(states, cls_num)

        self.attrs = {'class_number': cls_num}
Y
yangyaming 已提交
100

Y
yangyaming 已提交
101
        self.inputs = {'MaxProbs': max_probs, 'Indices': idxs, 'Labels': labels}
Y
yangyaming 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

        self.outputs = {
            'BatchMetrics': metrics,
            'AccumMetrics': metrics,
            'AccumStatesInfo': states
        }

    def test_check_output(self):
        self.check_output()


class TestPrecisionRecallOp_1(OpTest):
    def setUp(self):
        self.op_type = "precision_recall"
        ins_num = 64
Y
yangyaming 已提交
117 118 119 120
        cls_num = 10
        max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
        idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
            (ins_num, 1)).astype('int32')
Y
yangyaming 已提交
121
        weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
Y
yangyaming 已提交
122
        labels = np.random.choice(xrange(cls_num), ins_num).reshape(
Y
yangyaming 已提交
123 124
            (ins_num, 1)).astype('int32')

Y
yangyaming 已提交
125 126 127 128 129
        states = get_states(idxs, labels, cls_num, weights)
        metrics = compute_metrics(states, cls_num)

        self.attrs = {'class_number': cls_num}

Y
yangyaming 已提交
130
        self.inputs = {
Y
yangyaming 已提交
131 132
            'MaxProbs': max_probs,
            'Indices': idxs,
Y
yangyaming 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            'Labels': labels,
            'Weights': weights
        }

        self.outputs = {
            'BatchMetrics': metrics,
            'AccumMetrics': metrics,
            'AccumStatesInfo': states
        }

    def test_check_output(self):
        self.check_output()


class TestPrecisionRecallOp_2(OpTest):
    def setUp(self):
        self.op_type = "precision_recall"
        ins_num = 64
Y
yangyaming 已提交
151 152 153 154
        cls_num = 10
        max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
        idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
            (ins_num, 1)).astype('int32')
Y
yangyaming 已提交
155
        weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
Y
yangyaming 已提交
156
        labels = np.random.choice(xrange(cls_num), ins_num).reshape(
Y
yangyaming 已提交
157
            (ins_num, 1)).astype('int32')
Y
yangyaming 已提交
158
        states = np.random.randint(0, 30, (cls_num, 4)).astype('float32')
Y
yangyaming 已提交
159

Y
yangyaming 已提交
160 161
        accum_states = get_states(idxs, labels, cls_num, weights)
        batch_metrics = compute_metrics(accum_states, cls_num)
Y
yangyaming 已提交
162
        accum_states += states
Y
yangyaming 已提交
163 164 165
        accum_metrics = compute_metrics(accum_states, cls_num)

        self.attrs = {'class_number': cls_num}
Y
yangyaming 已提交
166 167

        self.inputs = {
Y
yangyaming 已提交
168 169
            'MaxProbs': max_probs,
            'Indices': idxs,
Y
yangyaming 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            'Labels': labels,
            'Weights': weights,
            'StatesInfo': states
        }

        self.outputs = {
            'BatchMetrics': batch_metrics,
            'AccumMetrics': accum_metrics,
            'AccumStatesInfo': accum_states
        }

    def test_check_output(self):
        self.check_output()


if __name__ == '__main__':
    unittest.main()