test_recommender_system.py 6.8 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Q
Qiao Longfei 已提交
14
import numpy as np
15
import paddle.v2 as paddle
Q
Qiao Longfei 已提交
16
import paddle.v2.fluid.core as core
17
import paddle.v2.fluid.framework as framework
Q
Qiao Longfei 已提交
18 19
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
Q
Qiao Longfei 已提交
20
from paddle.v2.fluid.executor import Executor
Q
Qiao Longfei 已提交
21
from paddle.v2.fluid.optimizer import SGDOptimizer
22

23 24
IS_SPARSE = True
USE_GPU = False
25 26 27 28 29 30 31 32 33
BATCH_SIZE = 256


def get_usr_combined_features():
    # FIXME(dzh) : old API integer_value(10) may has range check.
    # currently we don't have user configurated check.

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

F
fengjiayi 已提交
34
    uid = layers.data(name='user_id', shape=[1], dtype='int64')
35 36 37

    usr_emb = layers.embedding(
        input=uid,
F
fengjiayi 已提交
38
        dtype='float32',
39
        size=[USR_DICT_SIZE, 32],
Y
Yu Yang 已提交
40
        param_attr='user_table',
41
        is_sparse=IS_SPARSE)
42

Q
Qiao Longfei 已提交
43
    usr_fc = layers.fc(input=usr_emb, size=32)
44 45 46

    USR_GENDER_DICT_SIZE = 2

F
fengjiayi 已提交
47
    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')
48 49 50 51

    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
Y
Yu Yang 已提交
52
        param_attr='gender_table',
53
        is_sparse=IS_SPARSE)
54

Q
Qiao Longfei 已提交
55
    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
56 57

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
F
fengjiayi 已提交
58
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")
59 60 61 62

    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
63
        is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
64
        param_attr='age_table')
65

Q
Qiao Longfei 已提交
66
    usr_age_fc = layers.fc(input=usr_age_emb, size=16)
67 68

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
F
fengjiayi 已提交
69
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")
70 71 72 73

    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
Y
Yu Yang 已提交
74
        param_attr='job_table',
75
        is_sparse=IS_SPARSE)
76

Q
Qiao Longfei 已提交
77
    usr_job_fc = layers.fc(input=usr_job_emb, size=16)
78 79

    concat_embed = layers.concat(
Q
Qiao Longfei 已提交
80
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)
81

Q
Qiao Longfei 已提交
82
    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
83 84 85 86 87 88 89 90

    return usr_combined_features


def get_mov_combined_features():

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

F
fengjiayi 已提交
91
    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')
92 93 94

    mov_emb = layers.embedding(
        input=mov_id,
F
fengjiayi 已提交
95
        dtype='float32',
96
        size=[MOV_DICT_SIZE, 32],
Y
Yu Yang 已提交
97
        param_attr='movie_table',
98
        is_sparse=IS_SPARSE)
99

Q
Qiao Longfei 已提交
100
    mov_fc = layers.fc(input=mov_emb, size=32)
101 102 103

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

F
fengjiayi 已提交
104
    category_id = layers.data(name='category_id', shape=[1], dtype='int64')
105 106

    mov_categories_emb = layers.embedding(
Q
Qiao Longfei 已提交
107
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)
108 109

    mov_categories_hidden = layers.sequence_pool(
Q
Qiao Longfei 已提交
110
        input=mov_categories_emb, pool_type="sum")
111 112 113

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

F
fengjiayi 已提交
114
    mov_title_id = layers.data(name='movie_title', shape=[1], dtype='int64')
115 116

    mov_title_emb = layers.embedding(
Q
Qiao Longfei 已提交
117
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)
118 119 120 121 122 123

    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
124
        pool_type="sum")
125 126

    concat_embed = layers.concat(
Q
Qiao Longfei 已提交
127
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)
128 129

    # FIXME(dzh) : need tanh operator
Q
Qiao Longfei 已提交
130
    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
131 132 133 134 135 136 137 138 139

    return mov_combined_features


def model():
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()

    # need cos sim
Q
Qiao Longfei 已提交
140
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
T
typhoonzero 已提交
141
    scale_infer = layers.scale(x=inference, scale=5.0)
142

F
fengjiayi 已提交
143
    label = layers.data(name='score', shape=[1], dtype='float32')
144

T
typhoonzero 已提交
145
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
146

147
    avg_cost = layers.mean(x=square_cost)
148 149 150 151 152 153

    return avg_cost


def main():
    cost = model()
Q
Qiao Longfei 已提交
154
    sgd_optimizer = SGDOptimizer(learning_rate=0.2)
155
    opts = sgd_optimizer.minimize(cost)
156

157
    if USE_GPU:
D
dzhwinter 已提交
158
        place = core.CUDAPlace(0)
159 160 161 162
    else:
        place = core.CPUPlace()

    exe = Executor(place)
163
    exe.run(framework.default_startup_program())
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.movielens.train(), buf_size=8192),
        batch_size=BATCH_SIZE)

    feeding = {
        'user_id': 0,
        'gender_id': 1,
        'age_id': 2,
        'job_id': 3,
        'movie_id': 4,
        'category_id': 5,
        'movie_title': 6,
        'score': 7
    }

    def func_feed(feeding, data):
        feed_tensors = {}
        for (key, idx) in feeding.iteritems():
            tensor = core.LoDTensor()
            if key != "category_id" and key != "movie_title":
                if key == "score":
                    numpy_data = np.array(map(lambda x: x[idx], data)).astype(
                        "float32")
                else:
                    numpy_data = np.array(map(lambda x: x[idx], data)).astype(
                        "int64")
            else:
                numpy_data = map(lambda x: np.array(x[idx]).astype("int64"),
                                 data)
                lod_info = [len(item) for item in numpy_data]
                offset = 0
                lod = [offset]
                for item in lod_info:
                    offset += item
                    lod.append(offset)
                numpy_data = np.concatenate(numpy_data, axis=0)
                tensor.set_lod([lod])

            numpy_data = numpy_data.reshape([numpy_data.shape[0], 1])
            tensor.set(numpy_data, place)
            feed_tensors[key] = tensor
        return feed_tensors

    PASS_NUM = 100
    for pass_id in range(PASS_NUM):
        for data in train_reader():
212
            outs = exe.run(framework.default_main_program(),
213 214 215
                           feed=func_feed(feeding, data),
                           fetch_list=[cost])
            out = np.array(outs[0])
216 217
            if out[0] < 6.0:
                # if avg cost less than 6.0, we think our code is good.
218 219 220 221
                exit(0)


main()