registry.py 6.5 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
D
dzhwinter 已提交
14 15 16 17 18 19 20 21 22 23
import re
import cStringIO
import warnings
import functools
import inspect

import proto.framework_pb2 as framework_pb2
from framework import OpProtoHolder, Variable, Program, Operator
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name

24 25 26 27 28
__all__ = [
    'deprecated',
    'register_layer',
    'autodoc',
]
D
dzhwinter 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99


def _convert_(name):
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto

    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    def _type_to_str_(tp):
        return framework_pb2.AttrType.Name(tp)

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


def register_layer(op_type):
100
    """Register the Python layer for an Operator.
D
dzhwinter 已提交
101 102

    Args:
103
       op_type: The name of the operator to be created.
D
dzhwinter 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
        raise ValueError("Only one non intermediate output operator can be",
117
                         "automatically generated.")
D
dzhwinter 已提交
118 119 120

    if not_intermediate_outputs[0].duplicable:
        raise ValueError(
121
            "Only non duplicable op can be automatically generated.")
D
dzhwinter 已提交
122 123 124 125

    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError("The op can be automatically generated only when ",
126
                             "all intermediate ops are not duplicable.")
D
dzhwinter 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]

    def infer_and_check_dtype(op_proto, **kwargs):
        """
        This function performs the sanity check for dtype and
        instance type.
        """
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.dtype
                elif dtype != each.dtype:
                    raise ValueError(
                        "operator {0} must input same dtype. {1} vs {2}".format(
                            op_type, dtype, each.dtype))

        return dtype

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)

        dtype = infer_and_check_dtype(op_proto, **kwargs)

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            inputs[ipt.name] = val

        outputs = dict()
        out = helper.create_tmp_variable(dtype=dtype)
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
        return helper.append_activation(out)

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


def deprecated(func_or_class):
    """
    Deprecated warning decorator. It will result a warning message.
    Should be used before class or function, member function
    """

    @functools.wraps(func)
    def func_wrapper(*args, **kwargs):
        """
        Wrap func with deprecated warning
        """
Y
Yang Yu 已提交
194
        warnings.simplefilter('always', DeprecationWarning)  # turn off filter
D
dzhwinter 已提交
195 196 197 198
        warnings.warn(
            "Call to deprecated function {}.".format(func.__name__),
            category=DeprecationWarning,
            stacklevel=2)
Y
Yang Yu 已提交
199
        warnings.simplefilter('default', DeprecationWarning)  # reset filter
D
dzhwinter 已提交
200 201 202
        return func(*args, **kwargs)

    return func_wrapper
Y
Yang Yu 已提交
203 204 205 206 207 208


def autodoc(func):
    func.__doc__ = _generate_doc_string_(OpProtoHolder.instance().get_op_proto(
        func.__name__))
    return func