test_transformer_api.py 31.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.nn.layer.transformer import MultiHeadAttention, TransformerEncoderLayer, TransformerDecoderLayer, TransformerEncoder, TransformerDecoder, Transformer

import unittest


def generate_basic_params(mode="attn", self_attention=True):
    batch_size, query_length = [np.random.randint(2, 10) for _ in range(2)]
    d_head, num_heads = [np.random.randint(3, 10) for _ in range(2)]
    attn_dropout = 0.0
    embed_dim = d_head * num_heads
    if mode == "attn":
        if self_attention:
            kdim, vdim = embed_dim, embed_dim
            key_length, value_length = query_length, query_length
        else:
            kdim, vdim = [np.random.randint(5, 20) for _ in range(2)]
            key_length = np.random.randint(2, 10)
            value_length = key_length
        return batch_size, query_length, key_length, value_length, embed_dim, kdim, vdim, num_heads, attn_dropout

    else:
        dropout, act_dropout = 0.0, 0.0
        dim_feedforward = np.random.randint(128, 1024)
        sequence_length = np.random.randint(2, 10)
        if mode == "encoder_layer":
            return batch_size, embed_dim, num_heads, dim_feedforward, dropout, attn_dropout, act_dropout, sequence_length
        elif mode == "decoder_layer":
            target_length = np.random.randint(2, 10)
            return batch_size, embed_dim, num_heads, dim_feedforward, dropout, attn_dropout, act_dropout, sequence_length, target_length


def generate_query_key_value_cache(self_attention,
                                   batch_size,
                                   num_heads,
                                   query_length,
                                   embed_dim,
54
                                   attn_mask_type,
55 56 57 58 59 60 61
                                   key_length=None,
                                   value_length=None,
                                   kdim=None,
                                   vdim=None,
                                   cache=None):
    query = np.random.rand(batch_size, query_length,
                           embed_dim).astype("float32")
62 63 64 65 66 67 68 69
    attn_mask = np.ones(
        (batch_size, num_heads, query_length, key_length), dtype=attn_mask_type)
    if attn_mask_type == 'int64':
        attn_mask = np.tril(attn_mask)
    elif attn_mask_type == 'float64':
        attn_mask = (np.tril(attn_mask) - 1.0) * 1e9
    else:
        raise ValueError("'attn_mask_type' should be 'int64' or 'float64'.")
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

    head_dim = embed_dim // num_heads
    if self_attention:
        key, value = query, query
    else:
        key = np.random.rand(batch_size, key_length, kdim).astype("float32")
        value = np.random.rand(batch_size, value_length, vdim).astype("float32")
    cache_dict = {}
    if cache:
        if not self_attention:
            cache_dict["static_k"] = np.random.rand(
                batch_size, num_heads, key_length, head_dim).astype("float32")
            cache_dict["static_v"] = np.random.rand(
                batch_size, num_heads, value_length, head_dim).astype("float32")
        else:
            cache_dict["k"] = np.random.rand(batch_size, num_heads, key_length,
                                             head_dim).astype("float32")
            cache_dict["v"] = np.random.rand(
                batch_size, num_heads, value_length, head_dim).astype("float32")
    else:
        cache_dict = None
    return query, key, value, attn_mask, cache_dict


def fc(x, weight):
    return np.matmul(x, weight)


def softmax(x):
    np.seterr(invalid='ignore')
    output = np.zeros(x.shape, dtype=np.float64)
    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            for k in range(x.shape[2]):
                x_curr = x[i, j, k, :]
                e_x = np.exp(x_curr - np.amax(x_curr))
                output[i, j, k, :] = e_x / np.sum(e_x)
    return output


def batch_matmul(x, y):
    assert x.shape[0] == y.shape[0]
    assert x.shape[1] == y.shape[1]
    retval = np.zeros(
        (x.shape[0], x.shape[1], x.shape[2], y.shape[3]), dtype=np.float64)
    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            retval[i, j, :, :] = np.matmul(x[i, j, :, :], y[i, j, :, :])
    return retval


def scaled_dot_product_attention(q, k, v, d_key, attn_mask, multi_head_attn):
    k = k.transpose([0, 1, 3, 2])
    qkt = batch_matmul(q, k / np.sqrt(d_key, dtype=np.float64))
    if attn_mask is not None:
125 126 127 128
        if attn_mask.dtype.name == 'int64':
            attn_mask = (attn_mask.astype(qkt.dtype) - 1.0) * 1e9
        else:
            attn_mask = attn_mask.astype(qkt.dtype)
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        qkt += attn_mask
    weight = softmax(qkt)
    attn_heads = batch_matmul(weight, v)
    attn_heads = attn_heads.transpose((0, 2, 1, 3))
    attn_heads = attn_heads.reshape((attn_heads.shape[0], attn_heads.shape[1],
                                     attn_heads.shape[2] * attn_heads.shape[3]))
    return attn_heads


def cal_qkv(key, value, num_heads, embed_dim, multi_head_attn):
    with fluid.dygraph.guard():
        head_dim = embed_dim // num_heads
        k_weight = multi_head_attn.k_proj.weight.numpy()
        v_weight = multi_head_attn.v_proj.weight.numpy()
        k = fc(key, k_weight)
        v = fc(value, v_weight)
        k = k.reshape((k.shape[0], k.shape[1], num_heads, head_dim))
        k = k.transpose((0, 2, 1, 3))
        v = v.reshape((v.shape[0], v.shape[1], num_heads, head_dim))
        v = v.transpose((0, 2, 1, 3))
        return k, v


def prepare_qkv(query, key, value, num_heads, embed_dim, self_attention,
                multi_head_attn, cache_dict):
    q_weight = multi_head_attn.q_proj.weight.numpy()
    q = fc(query, q_weight)
    q = q.reshape((q.shape[0], q.shape[1], num_heads, embed_dim // num_heads))
    q = q.transpose((0, 2, 1, 3))

    if not self_attention and cache_dict:
        k, v = cache_dict["static_k"], cache_dict["static_v"]
    else:
        k, v = cal_qkv(key, value, num_heads, embed_dim, multi_head_attn)
        if cache_dict is not None:
            k = np.concatenate((cache_dict["k"], k), axis=2)
            v = np.concatenate((cache_dict["v"], v), axis=2)
    return (q, k, v, cache_dict)


def add(x, y=None):
    fluid.enable_dygraph()
    with fluid.dygraph.guard():
        x = x.numpy() if not isinstance(x, np.ndarray) else x
        if y is not None:
            x += y
            return x
        return x


def relu(x):
    compare = x > 0
    return x * compare


def layer_norm(x, normalized_shape, norm, epsilon=1e-05, act=None):
    fluid.enable_dygraph()
    with fluid.dygraph.guard():
        # scale:
        weight = norm.weight.numpy()
        # shift:
        bias = norm.bias.numpy()

        batch_size, src_len, d_model = x.shape
        x = x.reshape((batch_size * src_len, d_model))
        mu = np.mean(x, axis=1, keepdims=True)
        sigma_squar = np.sum(np.square(x - mu), axis=1) / d_model
        x1_up = (x - mu)
        x1_down_1 = sigma_squar + epsilon
        x1_down = np.sqrt(x1_down_1)
        x1_down = x1_down.reshape((x1_down.shape[0], 1))
        x1 = x1_up / x1_down
        x_scaled = weight * x1
        x_scaled_bias = x_scaled + bias
        x_scaled_bias = x_scaled_bias.reshape((batch_size, src_len, d_model))
    return x_scaled_bias


def ffn(src, encoder_layer, ffn_fc1_act="relu"):
    assert ffn_fc1_act == "relu", "only relu is supported"
    fluid.enable_dygraph()
    with fluid.dygraph.guard():
        src = src.numpy() if not isinstance(src, np.ndarray) else src
        w1 = encoder_layer.linear1.weight.numpy()
        w2 = encoder_layer.linear2.weight.numpy()
        # fc1
        x1 = fc(src, w1)
        x1 = relu(x1)
        # fc2
        x2 = fc(x1, w2)
        return x2


class TestTransformer(unittest.TestCase):
    def test_multi_head_attention(self):
        def multihead_attention_test_helper(self_attention, cache):
C
cnn 已提交
225
            paddle.seed(2020)
L
Leo Chen 已提交
226
            paddle.framework.random._manual_program_seed(2020)
227 228 229 230 231 232
            # self_attention|cross_attention, cache|No cache
            with fluid.dygraph.guard(fluid.CPUPlace()):

                # generate params for multi_head_attention
                batch_size, query_length, key_length, value_length, embed_dim, kdim, vdim, num_heads, attn_dropout = generate_basic_params(
                    "attn", self_attention)
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                for attn_mask_type in ['int64', 'float64']:
                    query, key, value, attn_mask, cache_dict = generate_query_key_value_cache(
                        self_attention, batch_size, num_heads, query_length,
                        embed_dim, attn_mask_type, key_length, value_length,
                        kdim, vdim, cache)
                    if cache and self_attention:
                        attn_mask = np.concatenate(
                            (attn_mask, attn_mask), axis=3)
                    need_weight, param_attr, bias_attr = False, None, None
                    # call paddle's function
                    multi_head_attn = MultiHeadAttention(
                        embed_dim, num_heads, attn_dropout, kdim, vdim,
                        need_weight, param_attr, bias_attr)
                    # construct cache object
                    cache_obj = None
                    if cache_dict:
                        if 'k' and 'v' in cache_dict:
                            cache_obj = multi_head_attn.Cache(
                                paddle.to_tensor(cache_dict['k']),
                                paddle.to_tensor(cache_dict['v']))
                        elif 'static_k' and 'static_v' in cache_dict:
                            cache_obj = multi_head_attn.StaticCache(
                                paddle.to_tensor(cache_dict['static_k']),
                                paddle.to_tensor(cache_dict['static_v']))
                    if attn_mask is not None:
                        attn_output = multi_head_attn(
                            paddle.to_tensor(query),
                            paddle.to_tensor(key),
                            paddle.to_tensor(value),
                            paddle.to_tensor(attn_mask), cache_obj)
                    else:
                        attn_output = multi_head_attn(
                            paddle.to_tensor(query),
                            paddle.to_tensor(key),
                            paddle.to_tensor(value), attn_mask, cache_obj)
                    attn_output = attn_output[0] if cache_dict else attn_output

                    # implementation by numpy
                    # compute q, k, v
                    q, k, v, _ = prepare_qkv(query, key, value, num_heads,
                                             embed_dim, self_attention,
                                             multi_head_attn, cache_dict)
                    # scale dot product attention
                    attn_heads = scaled_dot_product_attention(
                        q, k, v, embed_dim // num_heads, attn_mask,
                        multi_head_attn)
                    out_proj_weight = multi_head_attn.out_proj.weight.numpy()
                    reference = fc(attn_heads, out_proj_weight)

                    np.testing.assert_allclose(
                        attn_output.numpy(), reference, atol=1e-6)
284 285 286 287 288 289 290 291 292

        multihead_attention_test_helper(True, True)
        multihead_attention_test_helper(True, False)
        multihead_attention_test_helper(False, True)
        multihead_attention_test_helper(False, False)

    def test_transformer_encoder_layer(self):

        with fluid.dygraph.guard(fluid.CPUPlace()):
C
cnn 已提交
293
            paddle.framework.seed(2020)
L
Leo Chen 已提交
294
            paddle.framework.random._manual_program_seed(2020)
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

            ffn_fc1_act = "relu"
            # 1.generate basic params
            batch_size, d_model, n_head, dim_feedforward, dropout, attn_dropout, act_dropout, sequence_length = generate_basic_params(
                mode="encoder_layer")
            # 2.generate input for encoder
            src = np.random.rand(batch_size, sequence_length,
                                 d_model).astype("float32")
            residual = src
            src_mask = np.zeros((batch_size, n_head, sequence_length,
                                 sequence_length)).astype("float32")
            src_mask[0][0][0][0] = -np.inf

            # paddle
            encoder_layer = TransformerEncoderLayer(
                d_model, n_head, dim_feedforward, dropout, ffn_fc1_act,
                attn_dropout, act_dropout)

            encoder_output = encoder_layer(
314 315
                paddle.to_tensor(src),
                paddle.to_tensor(src_mask))  # paddle.to_tensor(src_mask))
316 317 318 319 320
            # 4.numpy:
            # paddle self attention
            self_attn = MultiHeadAttention(
                d_model, n_head, dropout=attn_dropout)
            attn_output = self_attn(
321 322 323
                paddle.to_tensor(src),
                paddle.to_tensor(src),
                paddle.to_tensor(src), paddle.to_tensor(src_mask)).numpy()
324 325 326 327 328 329 330 331 332 333 334 335

            src = attn_output + residual
            src_norm = layer_norm(src, d_model, encoder_layer.norm1)
            residual = src_norm

            ffn_output = ffn(src_norm, encoder_layer, ffn_fc1_act)
            src = residual + ffn_output
            src = layer_norm(src, d_model, encoder_layer.norm2)

            np.testing.assert_allclose(
                encoder_output.numpy(), src, rtol=1e-5, atol=1e-6)

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    def test_transformer_encoder_layer_attr_1(self):
        with fluid.dygraph.guard(fluid.CPUPlace()):
            paddle.framework.seed(2020)
            paddle.framework.random._manual_program_seed(2020)

            ffn_fc1_act = "relu"
            # 1.generate basic params
            batch_size, d_model, n_head, dim_feedforward, dropout, attn_dropout, act_dropout, sequence_length = generate_basic_params(
                mode="encoder_layer")
            # 2.generate input for encoder
            src = np.random.rand(batch_size, sequence_length,
                                 d_model).astype("float32")
            src_mask = np.zeros((batch_size, n_head, sequence_length,
                                 sequence_length)).astype("float32")
            src_mask[0][0][0][0] = -np.inf

            for cache in [True, False]:
                # paddle
                encoder_layer = TransformerEncoderLayer(
                    d_model, n_head, dim_feedforward, dropout, ffn_fc1_act,
                    attn_dropout, act_dropout)
                cache_objs = None
                if cache:
                    cache_objs = encoder_layer.gen_cache(paddle.to_tensor(src))

                encoder_output = encoder_layer(
                    paddle.to_tensor(src),
                    paddle.to_tensor(src_mask), cache_objs)
                encoder_output = encoder_output[0].numpy(
                ) if cache else encoder_output.numpy()

                # 4.numpy:
                residual = src
                # paddle self attention
                self_attn = MultiHeadAttention(
                    d_model, n_head, dropout=attn_dropout)
                attn_output = self_attn(
                    paddle.to_tensor(src),
                    paddle.to_tensor(src),
                    paddle.to_tensor(src),
                    paddle.to_tensor(src_mask), cache_objs)
                attn_output = attn_output[0].numpy(
                ) if cache else attn_output.numpy()

                src = attn_output + residual
                src_norm = layer_norm(src, d_model, encoder_layer.norm1)
                residual = src_norm

                ffn_output = ffn(src_norm, encoder_layer, ffn_fc1_act)
                src = residual + ffn_output
                src = layer_norm(src, d_model, encoder_layer.norm2)

                np.testing.assert_allclose(
                    encoder_output, src, rtol=1e-5, atol=1e-6)

391 392
    def test_transformer_decoder_layer(self):
        with fluid.dygraph.guard(fluid.CPUPlace()):
C
cnn 已提交
393
            paddle.framework.seed(2020)
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
            activation = "relu"
            normalize_before = False
            batch_size, d_model, n_head, dim_feedforward, dropout, attn_dropout, act_dropout, source_length, target_length = generate_basic_params(
                mode="decoder_layer")
            tgt = np.random.rand(batch_size, target_length,
                                 d_model).astype("float32")
            memory = np.random.rand(batch_size, source_length,
                                    d_model).astype("float32")
            tgt_mask = np.zeros((batch_size, n_head, target_length,
                                 target_length)).astype("float32")
            tgt_mask[0][0][0][0] = -1e9
            memory_mask = np.zeros((batch_size, n_head, target_length,
                                    source_length)).astype("float32")
            memory_mask[0][0][0][0] = -1e9
            for cache in [True, False]:
                self_attn = MultiHeadAttention(
                    d_model, n_head, dropout=attn_dropout)
                cross_attn = MultiHeadAttention(
                    d_model, n_head, dropout=attn_dropout)

                # paddle decoderlayer:
                decoder_layer = TransformerDecoderLayer(
                    d_model, n_head, dim_feedforward, dropout, activation,
                    attn_dropout, act_dropout, normalize_before)
                cache_objs = None
                if cache:
                    cache_objs = decoder_layer.gen_cache(
421
                        paddle.to_tensor(memory))
422 423

                decoder_output = decoder_layer(
424 425 426 427
                    paddle.to_tensor(tgt),
                    paddle.to_tensor(memory),
                    paddle.to_tensor(tgt_mask),
                    paddle.to_tensor(memory_mask), cache_objs)
428 429 430 431 432 433 434 435 436 437

                decoder_output = decoder_output[0].numpy(
                ) if cache else decoder_output.numpy()

                # numpy:
                residual = tgt
                # self-attn
                self_attn_cache = cache_objs[
                    0] if cache_objs is not None else None
                tgt = self_attn(
438 439 440 441
                    paddle.to_tensor(tgt),
                    paddle.to_tensor(tgt),
                    paddle.to_tensor(tgt),
                    paddle.to_tensor(tgt_mask), self_attn_cache)
442 443 444 445 446 447 448 449 450 451 452

                tgt = tgt[0].numpy() if cache else tgt.numpy()

                tgt = residual + tgt
                # postprocess
                tgt_norm = layer_norm(tgt, d_model, decoder_layer.norm1)
                residual = tgt_norm
                # cross-attn
                cross_attn_cache = cache_objs[
                    1] if cache_objs is not None else None
                tgt = cross_attn(
453 454 455 456
                    paddle.to_tensor(tgt_norm),
                    paddle.to_tensor(memory),
                    paddle.to_tensor(memory),
                    paddle.to_tensor(memory_mask), cross_attn_cache)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                tgt = tgt[0].numpy() if cache else tgt.numpy()

                # postprocess
                tgt = tgt + residual
                tgt_norm = layer_norm(tgt, d_model, decoder_layer.norm2)
                residual = tgt_norm
                # FFN
                ffn_output = ffn(tgt_norm, decoder_layer, activation)
                # post process
                tgt = residual + ffn_output
                tgt_norm = layer_norm(tgt, d_model, decoder_layer.norm3)

                np.testing.assert_allclose(
                    decoder_output, tgt_norm, rtol=1e-5, atol=1e-6)

    def test_encoder(self):
        batch_size, d_model, n_head, dim_feedforward, dropout, attn_dropout, act_dropout, sequence_length = generate_basic_params(
            mode="encoder_layer")

        src = np.random.rand(batch_size, sequence_length,
                             d_model).astype("float32")

        src_mask = np.zeros((batch_size, n_head, sequence_length,
                             sequence_length)).astype("float32")
        src_mask[0][0][0][0] = -np.inf
        with fluid.dygraph.guard(fluid.CPUPlace()):
            encoder_layer = TransformerEncoderLayer(d_model, n_head,
                                                    dim_feedforward, dropout)
            num_layers = 6
            encoder = TransformerEncoder(encoder_layer, num_layers)
            # src, src_mask
            enc_output = encoder(
489
                paddle.to_tensor(src), paddle.to_tensor(src_mask))
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    def test_encoder_attr_1(self):
        batch_size, d_model, n_head, dim_feedforward, dropout, attn_dropout, act_dropout, sequence_length = generate_basic_params(
            mode="encoder_layer")

        src = np.random.rand(batch_size, sequence_length,
                             d_model).astype("float32")

        src_mask = np.zeros((batch_size, n_head, sequence_length,
                             sequence_length)).astype("float32")
        src_mask[0][0][0][0] = -np.inf
        with fluid.dygraph.guard(fluid.CPUPlace()):
            for cache in [True, False]:
                # paddle
                encoder_layer = TransformerEncoderLayer(
                    d_model, n_head, dim_feedforward, dropout)
                num_layers = 6
                encoder = TransformerEncoder(encoder_layer, num_layers)
                cache_objs = None
                if cache:
                    cache_objs = encoder.gen_cache(paddle.to_tensor(src))

                # src, src_mask
                enc_output = encoder(
                    paddle.to_tensor(src),
                    paddle.to_tensor(src_mask), cache_objs)

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    def test_decoder(self):
        batch_size, d_model, n_head, dim_feedforward, dropout, _, _, source_length, target_length = generate_basic_params(
            mode="decoder_layer")
        tgt = np.random.rand(batch_size, target_length,
                             d_model).astype("float32")
        memory = np.random.rand(batch_size, source_length,
                                d_model).astype("float32")
        tgt_mask = np.zeros((batch_size, n_head, target_length,
                             target_length)).astype("float32")
        tgt_mask[0][0][0][0] = -1e9
        memory_mask = np.zeros((batch_size, n_head, target_length,
                                source_length)).astype("float32")
        memory_mask[0][0][0][0] = -1e9
        with fluid.dygraph.guard(fluid.CPUPlace()):
            decoder_layer = TransformerDecoderLayer(d_model, n_head,
                                                    dim_feedforward, dropout)
            num_layers = 6
            decoder = TransformerDecoder(decoder_layer, num_layers)

            output = decoder(
537 538 539
                paddle.to_tensor(tgt),
                paddle.to_tensor(memory),
                paddle.to_tensor(tgt_mask), paddle.to_tensor(memory_mask))
540 541 542 543 544 545 546 547 548 549 550 551

    def test_transformer(self):
        batch_size, d_model, n_head, dim_feedforward, dropout, _, _, source_length, target_length = generate_basic_params(
            mode="decoder_layer")

        # batch_size, source_length, target_length, d_model, n_head = 4, 8, 8, 64, 8
        with fluid.dygraph.guard(fluid.CPUPlace()):
            transformer = Transformer(
                d_model,
                n_head,
                dim_feedforward=dim_feedforward,
                dropout=dropout)
552
            src = paddle.to_tensor(
553 554
                np.random.rand(batch_size, source_length, d_model).astype(
                    "float32"))
555
            tgt = paddle.to_tensor(
556 557 558 559 560
                np.random.rand(batch_size, target_length, d_model).astype(
                    "float32"))
            src_mask = np.zeros((batch_size, n_head, source_length,
                                 source_length)).astype("float32")
            src_mask[0][0][0][0] = -np.inf
561
            src_mask = paddle.to_tensor(src_mask)
562 563 564 565 566 567
            tgt_mask = np.zeros((batch_size, n_head, target_length,
                                 target_length)).astype("float32")
            tgt_mask[0][0][0][0] = -1e9
            memory_mask = np.zeros((batch_size, n_head, target_length,
                                    source_length)).astype("float32")
            memory_mask[0][0][0][0] = -1e9
568 569
            tgt_mask, memory_mask = paddle.to_tensor(
                tgt_mask), paddle.to_tensor(memory_mask)
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
            trans_output = transformer(src, tgt, src_mask, tgt_mask,
                                       memory_mask)

    def test_transformer_attr_1(self):
        batch_size, d_model, n_head, dim_feedforward, dropout, _, _, source_length, target_length = generate_basic_params(
            mode="decoder_layer")

        # batch_size, source_length, target_length, d_model, n_head = 4, 8, 8, 64, 8
        with fluid.dygraph.guard(fluid.CPUPlace()):
            transformer = Transformer(
                d_model,
                n_head,
                dim_feedforward=dim_feedforward,
                dropout=dropout,
                weight_attr=[None],
                bias_attr=[False])
Z
Zhou Wei 已提交
586
            src = paddle.to_tensor(
587 588
                np.random.rand(batch_size, source_length, d_model).astype(
                    "float32"))
Z
Zhou Wei 已提交
589
            tgt = paddle.to_tensor(
590 591 592 593 594
                np.random.rand(batch_size, target_length, d_model).astype(
                    "float32"))
            src_mask = np.zeros((batch_size, n_head, source_length,
                                 source_length)).astype("float32")
            src_mask[0][0][0][0] = -np.inf
Z
Zhou Wei 已提交
595
            src_mask = paddle.to_tensor(src_mask)
596 597 598 599 600 601
            tgt_mask = np.zeros((batch_size, n_head, target_length,
                                 target_length)).astype("float32")
            tgt_mask[0][0][0][0] = -1e9
            memory_mask = np.zeros((batch_size, n_head, target_length,
                                    source_length)).astype("float32")
            memory_mask[0][0][0][0] = -1e9
Z
Zhou Wei 已提交
602 603
            tgt_mask, memory_mask = paddle.to_tensor(
                tgt_mask), paddle.to_tensor(memory_mask)
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
            trans_output = transformer(src, tgt, src_mask, tgt_mask,
                                       memory_mask)

    def test_transformer_attr_2(self):
        batch_size, d_model, n_head, dim_feedforward, dropout, _, _, source_length, target_length = generate_basic_params(
            mode="decoder_layer")

        # batch_size, source_length, target_length, d_model, n_head = 4, 8, 8, 64, 8
        with fluid.dygraph.guard(fluid.CPUPlace()):
            transformer = Transformer(
                d_model,
                n_head,
                dim_feedforward=dim_feedforward,
                dropout=dropout,
                weight_attr=[None, None],
                bias_attr=[False, False])
Z
Zhou Wei 已提交
620
            src = paddle.to_tensor(
621 622
                np.random.rand(batch_size, source_length, d_model).astype(
                    "float32"))
Z
Zhou Wei 已提交
623
            tgt = paddle.to_tensor(
624 625 626 627 628
                np.random.rand(batch_size, target_length, d_model).astype(
                    "float32"))
            src_mask = np.zeros((batch_size, n_head, source_length,
                                 source_length)).astype("float32")
            src_mask[0][0][0][0] = -np.inf
Z
Zhou Wei 已提交
629
            src_mask = paddle.to_tensor(src_mask)
630 631 632 633 634 635
            tgt_mask = np.zeros((batch_size, n_head, target_length,
                                 target_length)).astype("float32")
            tgt_mask[0][0][0][0] = -1e9
            memory_mask = np.zeros((batch_size, n_head, target_length,
                                    source_length)).astype("float32")
            memory_mask[0][0][0][0] = -1e9
Z
Zhou Wei 已提交
636 637
            tgt_mask, memory_mask = paddle.to_tensor(
                tgt_mask), paddle.to_tensor(memory_mask)
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
            trans_output = transformer(src, tgt, src_mask, tgt_mask,
                                       memory_mask)

    def test_transformer_attr_3(self):
        batch_size, d_model, n_head, dim_feedforward, dropout, _, _, source_length, target_length = generate_basic_params(
            mode="decoder_layer")

        # batch_size, source_length, target_length, d_model, n_head = 4, 8, 8, 64, 8
        with fluid.dygraph.guard(fluid.CPUPlace()):
            transformer = Transformer(
                d_model,
                n_head,
                dim_feedforward=dim_feedforward,
                dropout=dropout,
                weight_attr=[None, None, None],
                bias_attr=[False, False, True])
Z
Zhou Wei 已提交
654
            src = paddle.to_tensor(
655 656
                np.random.rand(batch_size, source_length, d_model).astype(
                    "float32"))
Z
Zhou Wei 已提交
657
            tgt = paddle.to_tensor(
658 659 660 661 662
                np.random.rand(batch_size, target_length, d_model).astype(
                    "float32"))
            src_mask = np.zeros((batch_size, n_head, source_length,
                                 source_length)).astype("float32")
            src_mask[0][0][0][0] = -np.inf
Z
Zhou Wei 已提交
663
            src_mask = paddle.to_tensor(src_mask)
664 665 666 667 668 669
            tgt_mask = np.zeros((batch_size, n_head, target_length,
                                 target_length)).astype("float32")
            tgt_mask[0][0][0][0] = -1e9
            memory_mask = np.zeros((batch_size, n_head, target_length,
                                    source_length)).astype("float32")
            memory_mask[0][0][0][0] = -1e9
Z
Zhou Wei 已提交
670 671
            tgt_mask, memory_mask = paddle.to_tensor(
                tgt_mask), paddle.to_tensor(memory_mask)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
            trans_output = transformer(src, tgt, src_mask, tgt_mask,
                                       memory_mask)

    def test_transformer_attr_boolean(self):
        batch_size, d_model, n_head, dim_feedforward, dropout, _, _, source_length, target_length = generate_basic_params(
            mode="decoder_layer")

        # batch_size, source_length, target_length, d_model, n_head = 4, 8, 8, 64, 8
        with fluid.dygraph.guard(fluid.CPUPlace()):
            transformer = Transformer(
                d_model,
                n_head,
                dim_feedforward=dim_feedforward,
                dropout=dropout,
                bias_attr=False)
Z
Zhou Wei 已提交
687
            src = paddle.to_tensor(
688 689
                np.random.rand(batch_size, source_length, d_model).astype(
                    "float32"))
Z
Zhou Wei 已提交
690
            tgt = paddle.to_tensor(
691 692 693 694 695
                np.random.rand(batch_size, target_length, d_model).astype(
                    "float32"))
            src_mask = np.zeros((batch_size, n_head, source_length,
                                 source_length)).astype("float32")
            src_mask[0][0][0][0] = -np.inf
Z
Zhou Wei 已提交
696
            src_mask = paddle.to_tensor(src_mask)
697 698 699 700 701 702
            tgt_mask = np.zeros((batch_size, n_head, target_length,
                                 target_length)).astype("float32")
            tgt_mask[0][0][0][0] = -1e9
            memory_mask = np.zeros((batch_size, n_head, target_length,
                                    source_length)).astype("float32")
            memory_mask[0][0][0][0] = -1e9
Z
Zhou Wei 已提交
703 704
            tgt_mask, memory_mask = paddle.to_tensor(
                tgt_mask), paddle.to_tensor(memory_mask)
705 706 707
            trans_output = transformer(src, tgt, src_mask, tgt_mask,
                                       memory_mask)

708 709 710 711 712 713 714
    def test_generate_square_subsequent_mask(self):
        length = 5
        d_model, n_head, dim_feedforward = 8, 4, 64
        transformer = Transformer(
            d_model, n_head, dim_feedforward=dim_feedforward)
        mask = transformer.generate_square_subsequent_mask(length)

715 716 717

if __name__ == "__main__":
    unittest.main()