loss.py 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import paddle

17
# TODO: define loss functions of neural network
18
import numpy as np
19 20 21 22
import paddle
import paddle.fluid as fluid
from ...fluid.framework import core, in_dygraph_mode
from ...fluid.layers.nn import _elementwise_op_in_dygraph
23 24 25 26 27 28 29
from ...fluid.layers import bpr_loss  #DEFINE_ALIAS
from ...fluid.layers import center_loss  #DEFINE_ALIAS
from ...fluid.layers import dice_loss  #DEFINE_ALIAS
from ...fluid.layers import iou_similarity  #DEFINE_ALIAS
from ...fluid.layers import log_loss  #DEFINE_ALIAS
from ...fluid.layers import npair_loss  #DEFINE_ALIAS
from ...fluid.layers import rank_loss  #DEFINE_ALIAS
30
from ...fluid.layers import reshape
31 32 33 34 35 36 37 38
from ...fluid.layers import sigmoid_cross_entropy_with_logits  #DEFINE_ALIAS
from ...fluid.layers import sigmoid_focal_loss  #DEFINE_ALIAS
from ...fluid.layers import smooth_l1  #DEFINE_ALIAS
from ...fluid.layers import softmax_with_cross_entropy  #DEFINE_ALIAS
from ...fluid.layers import square_error_cost  #DEFINE_ALIAS
from ...fluid.layers import ssd_loss  #DEFINE_ALIAS
from ...fluid.layers import teacher_student_sigmoid_loss  #DEFINE_ALIAS

39 40 41
from ...fluid.layers import edit_distance  #DEFINE_ALIAS
from ...fluid.layers import huber_loss  #DEFINE_ALIAS
from ...fluid.layers import sampled_softmax_with_cross_entropy  #DEFINE_ALIAS
42
from ...fluid.layer_helper import LayerHelper
43
from ...fluid.framework import in_dygraph_mode
44
from ...fluid.framework import _varbase_creator
45
from ...fluid.framework import Variable
46

47
__all__ = [
48
    'binary_cross_entropy',
49 50 51 52
    'bpr_loss',
    'center_loss',
    'cross_entropy',
    'dice_loss',
53 54
    'edit_distance',
    'huber_loss',
55
    'iou_similarity',
56
    'kl_div',
57
    'l1_loss',
58 59
    'log_loss',
    'mse_loss',
60
    'margin_ranking_loss',
61
    #       'nce',
62
    'nll_loss',
63 64
    'npair_loss',
    'rank_loss',
65
    'sampled_softmax_with_cross_entropy',
66 67 68
    'sigmoid_cross_entropy_with_logits',
    'sigmoid_focal_loss',
    'smooth_l1',
69
    'smooth_l1_loss',
70 71 72 73 74
    'softmax_with_cross_entropy',
    'square_error_cost',
    'ssd_loss',
    'teacher_student_sigmoid_loss'
]
75 76


77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
def binary_cross_entropy(input, label, weight=None, reduction='mean',
                         name=None):
    """
    This op measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")

            paddle.disable_static()
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            output = paddle.nn.functional.binary_cross_entropy(input, label)
            print(output.numpy())  # [0.65537095]
            paddle.enable_static()

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

    if in_dygraph_mode():
        one = _varbase_creator(dtype=input.dtype)
        core.ops.fill_constant(one, 'value',
                               float(1.0), 'force_cpu', False, 'dtype',
                               one.dtype, 'str_value', '1.0', 'shape', [1])
        one.stop_gradient = True
        label_minus = core.ops.elementwise_sub(label, one)
        input_minus = core.ops.elementwise_sub(one, input)
        input_minus_log = core.ops.log(input_minus)
        input_log = core.ops.log(input)
        loss_1 = core.ops.elementwise_mul(label_minus, input_minus_log)
        loss_2 = core.ops.elementwise_mul(label, input_log)
        out = core.ops.elementwise_sub(loss_1, loss_2)

        if weight is not None:
            out = core.ops.elementwise_mul(out, weight, 'axis', -1)

        if reduction == 'sum':
            return core.ops.reduce_sum(out, 'dim', [0], 'keep_dim', False,
                                       "reduce_all", True)
        elif reduction == 'mean':
            return core.ops.reduce_mean(out, 'dim', [0], 'keep_dim', False,
                                        "reduce_all", True)
        else:
            return out

    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'binary_cross_entropy')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'binary_cross_entropy')

    one = paddle.fill_constant(shape=[1], value=1.0, dtype=input.dtype)
    one.stop_gradient = True
    label_minus = paddle.elementwise_sub(label, one)
    input_minus = paddle.elementwise_sub(one, input)
    input_minus_log = paddle.log(input_minus)
    input_log = paddle.log(input)
    loss_1 = paddle.multiply(label_minus, input_minus_log)
    loss_2 = paddle.multiply(label, input_log)

    sub_name = name if weight is None and reduction is 'none' else None
    out = paddle.elementwise_sub(loss_1, loss_2, name=sub_name)

    if weight is not None:
        if isinstance(weight, paddle.framework.Variable):
            weight_name = name if reduction is 'none' else None
            out = paddle.multiply(out, weight, axis=-1, name=weight_name)
        else:
            raise ValueError(
                "The weight is not a Tensor, please convert to Tensor.")

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out


213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
    """
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

         loss(x,y)=\\frac{1}{n}\\sum_{i}z_i


    where z_i is given by:

    .. math::

         \\mathop{z_i}=\\left\\{\\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
        \\end{array} \\right.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
246
        delta (float, optional): Specifies the hyperparameter delta to be used.
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        The tensor variable storing the smooth_l1_loss of input and label.

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            output = paddle.nn.functioanl.smooth_l1_loss(input, label)
            print(output.numpy())
    """
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'smooth_l1_loss')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'smooth_l1_loss')

    out = huber_loss(input=input, label=label, delta=delta)

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
            " 'none', but received %s, which is not allowed." % reduction)
    if reduction == 'none':
        return out
    elif reduction == 'mean':
        return fluid.layers.reduce_mean(out)
    elif reduction == 'sum':
        return fluid.layers.reduce_sum(out)


291 292
def margin_ranking_loss(input,
                        other,
293
                        label,
294 295 296 297 298
                        margin=0.0,
                        reduction='mean',
                        name=None):
    """

299
    This op the calcluate the the margin rank loss between the input, other and label, use the math function as follows.
300

301
    .. math::
302
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
319
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
320 321 322 323 324 325 326 327 328 329
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns: Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.

    Examples:

        .. code-block:: python

330 331 332
            import numpy as np
            import paddle

333
            paddle.disable_static()
334

335 336 337
            input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype('float32'))
            other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype('float32'))
            label = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype('float32'))
338
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
339 340
            print(loss.numpy()) # [0.75]
    """
341 342 343 344
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)
345 346
    if fluid.framework.in_dygraph_mode():
        out = core.ops.elementwise_sub(other, input)
347
        out = core.ops.elementwise_mul(out, label)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
            out = core.ops.elementwise_add(out, margin)
        out = core.ops.relu(out)
        if reduction == 'sum':
            return core.ops.reduce_sum(out, 'reduce_all', True)
        elif reduction == 'mean':
            return core.ops.mean(out)
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'margin_rank_loss')
    fluid.data_feeder.check_variable_and_dtype(
        other, 'other', ['float32', 'float64'], 'margin_rank_loss')
    fluid.data_feeder.check_variable_and_dtype(
364
        label, 'label', ['float32', 'float64'], 'margin_rank_loss')
365 366

    out = paddle.elementwise_sub(other, input)
367
    out = paddle.multiply(out, label)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
        paddle.fill_constant([1], out.dtype, margin, out=margin_var)
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
        helper.append_op(
            type="relu", inputs={"X": out}, outputs={"Out": result_out})
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
        helper.append_op(
            type="reduce_sum",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs=attrs)
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
        helper.append_op(
            type="mean",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs={})
        return result_out


399
def l1_loss(input, label, reduction='mean', name=None):
400
    """
401
    This operator computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
402

403
    If `reduction` set to ``'none'``, the loss is:
404 405

    .. math::
406
        Out = \lvert input - label\rvert
407

408
    If `reduction` set to ``'mean'``, the loss is:
409 410

    .. math::
411
        Out = MEAN(\lvert input - label\rvert)
412

413
    If `reduction` set to ``'sum'``, the loss is:
414 415

    .. math::
416
        Out = SUM(\lvert input - label\rvert)
417

418

419
    Parameters:
420 421
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
422
        reduction (str, optional): Indicate the reduction to apply to the loss,
423
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
424 425 426
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
427 428 429
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    Returns:
430 431 432
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
433 434 435 436
    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
437

438
            paddle.disable_static()
439
            input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
440
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
441
            input = paddle.to_variable(input_data)
442 443
            label = paddle.to_variable(label_data)

444
            l1_loss = paddle.nn.functional.l1_loss(input, label)
445
            print(l1_loss.numpy())
446 447
            # [0.35]

448
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
449
            print(l1_loss.numpy())
450 451 452
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

453
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
454
            print(l1_loss.numpy())
455 456 457 458 459 460 461 462 463
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

    if in_dygraph_mode():
        unreduced = _elementwise_op_in_dygraph(
464
            input, label, axis=-1, act='abs', op_name='elementwise_sub')
465 466 467 468 469 470 471 472 473
        if reduction == 'mean':
            return core.ops.mean(unreduced)
        elif reduction == 'sum':
            return core.ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                       'reduce_all', True)
        else:
            return unreduced

    fluid.data_feeder.check_variable_and_dtype(
474
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
475 476 477 478
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

    if reduction == 'sum':
479
        unreduced = paddle.elementwise_sub(input, label, act='abs')
480 481
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
482
        unreduced = paddle.elementwise_sub(input, label, act='abs')
483 484
        return paddle.mean(unreduced, name=name)
    else:
485
        return paddle.elementwise_sub(input, label, act='abs', name=name)
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
         ignore_index (int64, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient.
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
                import paddle
                import numpy as np
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                     [0.53331435, 0.07999352, 0.8549948 ],
                                     [0.25879037, 0.39530203, 0.698465  ],
                                     [0.73427284, 0.63575995, 0.18827209],
                                     [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)

                place = paddle.CPUPlace()
                paddle.disable_static(place)
                input = paddle.to_variable(input_np)
                log_out = log_softmax(input)
                label = paddle.to_variable(label_np)
                result = nll_loss(log_out, label)
                print(result.numpy()) # [1.0720209]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
        raise ValueError('Expected 2 or more dimensions (got {})'.format(
            input_dims))
    n = input_shape[0]
    c = input_shape[1]
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
            input, _ = core.ops.reshape2(input, 'shape', [n, c, 1, -1])
            label, _ = core.ops.reshape2(label, 'shape', [n, 1, -1])
            out_shape = [n] + input_shape[2:]
        out, total_weight = core.ops.nll_loss(input, label, weight,
                                              'ignore_index', ignore_index,
                                              'reduction', reduction)
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out, _ = core.ops.reshape2(out, 'shape', out_shape)
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'nll_loss')
    fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                               'nll_loss')
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

    helper.append_op(
        type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
595 596


597 598 599 600 601 602 603 604 605 606 607 608 609
def kl_div(input, label, reduction='mean', name=None):
    """
    This operator calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
610
    the same shape as input, loss in each point is calculated
611
    seperately and no reduction is applied.
612

613 614
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
615

616 617
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
618 619

    While :attr:`reduction` is :attr:`batchmean`, output loss is
620 621 622 623
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
624
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
625 626 627 628 629 630 631 632 633
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
634
        name(str, optional): Name for the operation (optional, default is None). For more information,
635 636 637 638 639 640 641 642 643 644 645
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F
646

647
            paddle.enable_imperative()
648

649 650 651 652 653 654 655 656
            shape = (5, 20)
            input = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

            # 'batchmean' reduction, loss shape will be [N]
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='batchmean')
            # shape=[5]
657

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
            # 'mean' reduction, loss shape will be [1]
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='mean')
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='sum')
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='none')
            # shape=[5, 20]

    """
    if paddle.in_dynamic_mode():
        out = core.ops.kldiv_loss(input, label, 'reduction', reduction)
        return out

    helper = LayerHelper('kl_div', **locals())

    fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                               ['float32', 'float64'], 'kl_div')
    fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                               ['float32', 'float64'], 'kl_div')
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': input,
                'Target': label},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
def mse_loss(input, label, reduction='mean', name=None):
    """
    This op accepts input predications and label and returns the mean square error.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        Tensor: The tensor tensor storing the mean square error difference of input and label.

    Return type: Tensor.
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    Examples:

        .. code-block:: python
            import numpy as np
            import paddle


            # static graph mode
            paddle.enable_static()
            mse_loss = paddle.nn.loss.MSELoss()
            input = paddle.data(name="input", shape=[1])
            label = paddle.data(name="label", shape=[1])
            place = paddle.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            output = mse_loss(input,label)
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            output_data = exe.run(
                paddle.static.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # dynamic graph mode
            paddle.disable_static()
            input = paddle.to_variable(input_data)
            label = paddle.to_variable(label_data)
            output = mse_loss(input, label)
            print(output.numpy())
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

    if not paddle.fluid.framework.in_dygraph_mode():
        paddle.fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss')
        paddle.fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss')

    if reduction == 'none':
        return paddle.fluid.layers.square(
            paddle.fluid.layers.elementwise_sub(input, label), name=name)
    elif reduction == 'mean':
        return paddle.mean(
            paddle.fluid.layers.square(
                paddle.fluid.layers.elementwise_sub(input, label)),
            name=name)
    else:
        return paddle.sum(paddle.fluid.layers.square(
            paddle.fluid.layers.elementwise_sub(input, label)),
                          name=name)
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920


def cross_entropy(input,
                  label,
                  weight=None,
                  ignore_index=-100,
                  reduction='mean'):
    """
    This operator implements the cross entropy loss function. This OP combines ``LogSoftmax``,
    and ``NLLLoss`` together.

    It is useful when training a classification problem with ``C`` classes.
    If provided, the optional argument ``weight`` should be a 1D Variable assigning
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.

    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

    If weight is not ``None``:

    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
        input (Tensor): Input tensor, the data type is float32, float64. Shape is
	    (N, C), where C is number of classes, and if shape is more than 2D, this
	    is (N, C, D1, D2,..., Dk), k >= 1. 
        label (Tensor): Label tensor, the data type is int64. Shape is (N), where each 
	    value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
	    (N, D1, D2,..., Dk), k >= 1.
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class and the shape is (C). It has the same dimensions as class
	    number and the data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient. Default is ``-100``.

    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
            input_data = np.random.random([5, 100]).astype("float64")
            label_data = np.random.randint(0, 100, size=(5)).astype(np.int64)
            weight_data = np.random.random([100]).astype("float64")
            input =  paddle.to_tensor(input_data)
            label =  paddle.to_tensor(label_data)
            weight = paddle.to_tensor(weight_data)
            loss = paddle.nn.functional.cross_entropy(input=input, label=label, weight=weight)
            print(loss.numpy())
 
    """
    if not in_dygraph_mode():
        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'cross_entropy_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'cross_entropy_loss')

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or"
            " 'none', but received %s, which is not allowed." % reduction)

    #step 1. log_softmax
    log_softmax_out = paddle.nn.functional.log_softmax(input)
    if weight is not None and not isinstance(weight, Variable):
        raise ValueError(
            "The weight' is not a Variable, please convert to Variable.")

    #step 2. nll_loss 
    input = log_softmax_out
    helper = LayerHelper('nll_loss', **locals())
    dtype = helper.input_dtype(input)

    if not in_dygraph_mode():
        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'nll_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'nll_loss')

    x_shape = list(input.shape)
    n = x_shape[0]
    c = x_shape[1]
    x_dims = len(x_shape)
    if x_dims < 2:
        raise ValueError('Expected 2 or more dimensions (got {})'.format(
            x_dims))
    if x_dims != 2 and x_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + x_shape[2:]

    if not in_dygraph_mode():
        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'nll_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'nll_loss')
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

    helper.append_op(
        type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
    if x_dims != 2 and x_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out