ProcessGroupGloo.cc 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>

#ifdef _WIN32
#include <gloo/common/win.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#else
#include <netdb.h>
#include <sys/socket.h>
#include <unistd.h>
#endif

#include <gloo/broadcast.h>
28 29
#include <gloo/reduce.h>
#include <gloo/scatter.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace distributed {

#ifdef _WIN32
#define GENERATE_FUNC(type, func, ...)       \
  switch (type) {                            \
    case experimental::DataType::FLOAT32:    \
      func<float>(__VA_ARGS__);              \
      break;                                 \
    case experimental::DataType::FLOAT64:    \
      func<double>(__VA_ARGS__);             \
      break;                                 \
    case experimental::DataType::FLOAT16:    \
      func<gloo::float16>(__VA_ARGS__);      \
      break;                                 \
    case experimental::DataType::INT32:      \
      func<int32_t>(__VA_ARGS__);            \
      break;                                 \
    case experimental::DataType::INT64:      \
      func<int64_t>(__VA_ARGS__);            \
      break;                                 \
    default:                                 \
      VLOG(0) << "Error: Unknown DataType."; \
      exit(-1);                              \
  }

#define HOST_NAME_MAX 256

#else
#define GENERATE_FUNC(type, func, args...)   \
  switch (type) {                            \
    case experimental::DataType::FLOAT32:    \
      func<float>(args);                     \
      break;                                 \
    case experimental::DataType::FLOAT64:    \
      func<double>(args);                    \
      break;                                 \
    case experimental::DataType::FLOAT16:    \
      func<gloo::float16>(args);             \
      break;                                 \
    case experimental::DataType::INT32:      \
      func<int32_t>(args);                   \
      break;                                 \
    case experimental::DataType::INT64:      \
      func<int64_t>(args);                   \
      break;                                 \
    default:                                 \
      VLOG(0) << "Error: Unknown DataType."; \
      exit(-1);                              \
  }
#endif

typedef void (*reduce_func)(void*, const void*, const void*, size_t);

template <typename T>
reduce_func get_function(const ReduceOp& r) {
  switch (r) {
    case ReduceOp::SUM:
      return reduce_func(&::gloo::sum<T>);
    case ReduceOp::PRODUCT:
      return reduce_func(&::gloo::product<T>);
    case ReduceOp::MIN:
      return reduce_func(&::gloo::min<T>);
    case ReduceOp::MAX:
      return reduce_func(&::gloo::max<T>);
    case ReduceOp::AVG:
      VLOG(0) << "Error: Unsupported ReduceOp::AVG.";
      exit(-1);
  }

  VLOG(0) << "Error: Unknown ReduceOp.";
  exit(-1);
}

bool CheckTensorsInCPUPlace(const std::vector<Tensor>& tensors) {
  return std::all_of(tensors.cbegin(), tensors.cend(), [&](const Tensor& t) {
    return t.place() == PlaceType::kCPU;
  });
}

template <typename T>
T* get_data(const Tensor& tensor) {
  auto raw_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
  return static_cast<T*>(raw_tensor->data());
}

template <typename T>
std::vector<T*> get_multi_data(const std::vector<Tensor>& tensors) {
  std::vector<T*> ret(tensors.size());
  for (size_t i = 0; i < tensors.size(); i++) {
    ret[i] = get_data<T>(tensors[i]);
  }
  return ret;
}

template <typename T, typename P>
void set_output(P& opts, const Tensor& tensor) {  // NOLINT
  opts.setOutput(get_data<T>(tensor), tensor.numel());
}

template <typename T, typename P>
void set_input(P& opts, const Tensor& tensor) {  // NOLINT
  opts.setInput(get_data<T>(tensor), tensor.numel());
}

template <typename T, typename P>
void set_outputs(P& opts, const std::vector<Tensor>& tensors) {  // NOLINT
  opts.setOutputs(get_multi_data<T>(tensors), tensors[0].numel());
}

template <typename T, typename P>
void set_inputs(P& opts, const std::vector<Tensor>& tensors) {  // NOLINT
  opts.setInputs(get_multi_data<T>(tensors), tensors[0].numel());
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
template <typename T, typename P>
void set_inputs_for_scatter(P& opts,                             // NOLINT
                            const std::vector<Tensor>& tensors,  // NOLINT
                            int nranks) {
  std::vector<T*> ret(nranks);
  auto raw_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(tensors[0].impl());
  T* raw_pointer = reinterpret_cast<T*>(raw_tensor->data());
  size_t offset = 0;
  for (int i = 0; i < nranks; i++) {
    ret[i] = raw_pointer + offset;
    offset += tensors[0].numel() / nranks;
  }
  opts.setInputs(ret, tensors[0].numel() / nranks);
}

165 166 167 168 169 170 171 172 173
ProcessGroupGloo::GlooTask::GlooTask(int rank,
                                     const std::vector<Tensor>& inputs,
                                     CommType comm_type)
    : ProcessGroup::Task(rank, inputs, comm_type) {
  PADDLE_ENFORCE_EQ(CheckTensorsInCPUPlace(inputs), true,
                    platform::errors::Fatal(
                        "Only CPU place is supported for ProcessGroupGloo."));
}

174 175 176 177
ProcessGroupGloo::ProcessGroupGloo(
    const std::shared_ptr<paddle::distributed::Store>& store, int rank,
    int world_size, const std::shared_ptr<GlooOptions> options)
    : ProcessGroup(rank, world_size), _tag(0), _store(new GlooStore(store)) {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  _context = std::make_shared<gloo::rendezvous::Context>(rank, world_size);
  auto prefix_store =
      ::gloo::rendezvous::PrefixStore(std::to_string(0), *_store);
  _context->connectFullMesh(prefix_store, options->device);
}

class BroadcastGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  BroadcastGlooTask(const std::shared_ptr<gloo::Context>& context,
                    const std::vector<Tensor>& inputs, int rank, int root,
                    uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::BROADCAST),
        _context(context),
        _root(root),
        _inputs(inputs),
        _tag(tag) {}

  void Run() override { _do_broadcast(_inputs[0]); }

 private:
  std::shared_ptr<gloo::Context> _context;
  const int _root;
  std::vector<Tensor> _inputs{};
  const uint32_t _tag;

  void _do_broadcast(const Tensor& tensor) {
    gloo::BroadcastOptions opts(_context);
    const auto& dtype = tensor.type();
    GENERATE_FUNC(dtype, set_output, opts, tensor);
    opts.setRoot(_root);
    opts.setTag(_tag);
    gloo::broadcast(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Broadcast(
    std::vector<Tensor>& inputs, const BroadcastOptions& opts) {
  auto root = opts.source_rank;
  std::unique_ptr<BroadcastGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
  task = std::make_unique<BroadcastGlooTask>(context, inputs, rank_, root, tag);
  task->Run();
  return task;
}

class AllreduceGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  AllreduceGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
                    std::vector<Tensor>& inputs, ReduceOp reduce_op,  // NOLINT
                    uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::ALLREDUCE),
        _context(context),
        _inputs(inputs),
        _reduce_op(reduce_op),
        _tag(tag) {}

  void Run() override { _do_allreduce(_inputs); }

 private:
  std::shared_ptr<gloo::Context> _context;
  std::vector<Tensor> _inputs;
  const ReduceOp _reduce_op;
  uint32_t _tag;

  gloo::AllreduceOptions::Func _get_function(const experimental::DataType type,
                                             const ReduceOp op) {
    gloo::AllreduceOptions::Func fn;
    GENERATE_FUNC(type, _get_function_impl, fn, op);
    return fn;
  }

  template <typename T>
  void _get_function_impl(gloo::AllreduceOptions::Func& fn,  // NOLINT
                          const ReduceOp op) {
    fn = get_function<T>(op);
  }

  void _do_allreduce(std::vector<Tensor>& tensors) {  // NOLINT
    const auto& dtype = tensors[0].type();
    gloo::AllreduceOptions opts(_context);
    GENERATE_FUNC(dtype, set_inputs, opts, tensors);
    GENERATE_FUNC(dtype, set_outputs, opts, tensors);
    opts.setReduceFunction(_get_function(dtype, _reduce_op));
    opts.setTag(_tag);
    gloo::allreduce(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllReduce(
    std::vector<Tensor>& inputs, const AllreduceOptions& opts) {
  auto tag = next_tag();
  std::shared_ptr<GlooTask> task;
  auto context = get_context();
  task = std::make_shared<AllreduceGlooTask>(rank_, context, inputs,
                                             opts.reduce_op, tag);
  task->Run();
  return task;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
class BarrierGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  BarrierGlooTask(int rank, const std::shared_ptr<gloo::Context>& context)
      : ProcessGroupGloo::GlooTask(rank, std::vector<Tensor>{},
                                   CommType::BARRIER),
        _context(context) {}

  void Run() override { _do_barrier(); }

 private:
  std::shared_ptr<gloo::Context> _context;

  void _do_barrier() {
    gloo::BarrierOptions opts(_context);
    gloo::barrier(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Barrier(
    const BarrierOptions& opts) {
  std::shared_ptr<BarrierGlooTask> task;
  auto context = get_context();
  task = std::make_shared<BarrierGlooTask>(rank_, context);
  task->Run();
  return task;
}

class AllgatherGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  AllgatherGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
                    std::vector<Tensor>& inputs,   // NOLINT
                    std::vector<Tensor>& outputs,  // NOLINT
                    uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::ALLGATHER),
        _context(context),
        _inputs(inputs),
        _outputs(outputs),
        _tag(tag) {}

  void Run() override { _do_allgather(_inputs, _outputs); }

 private:
  std::shared_ptr<gloo::Context> _context;
  std::vector<Tensor> _inputs;
  std::vector<Tensor> _outputs;
  uint32_t _tag;

  void _do_allgather(std::vector<Tensor>& in,     // NOLINT
                     std::vector<Tensor>& out) {  // NOLINT
    const auto& dtype = in[0].type();
    gloo::AllgatherOptions opts(_context);
    GENERATE_FUNC(dtype, set_input, opts, in[0]);
    GENERATE_FUNC(dtype, set_output, opts, out[0]);
    opts.setTag(_tag);
    gloo::allgather(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllGather(
    std::vector<Tensor>& in_tensors, std::vector<Tensor>& out_tensors) {
  std::shared_ptr<AllgatherGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
  task = std::make_shared<AllgatherGlooTask>(rank_, context, in_tensors,
                                             out_tensors, tag);
  task->Run();
  return task;
}

class ReduceGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  ReduceGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
                 std::vector<Tensor>& in, ReduceOp reduce_op,  // NOLINT
                 int dst, uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, in, CommType::REDUCE),
        _context(context),
        _inputs(in),
        _reduce_op(reduce_op),
        _dst(dst),
        _tag(tag) {}

  void Run() override { _do_reduce(_inputs, _dst); }

 private:
  std::shared_ptr<gloo::Context> _context;
  std::vector<Tensor> _inputs;
  const ReduceOp _reduce_op;
  int _dst;
  uint32_t _tag;

  gloo::ReduceOptions::Func _get_function(const experimental::DataType type,
                                          const ReduceOp op) {
    gloo::ReduceOptions::Func fn;
    GENERATE_FUNC(type, _get_function_impl, fn, op);
    return fn;
  }

  template <typename T>
  void _get_function_impl(gloo::ReduceOptions::Func& fn,  // NOLINT
                          const ReduceOp op) {
    fn = get_function<T>(op);
  }

  void _do_reduce(std::vector<Tensor>& tensors, int dst) {  // NOLINT
    const auto& dtype = tensors[0].type();
    gloo::ReduceOptions opts(_context);
    GENERATE_FUNC(dtype, set_input, opts, tensors[0]);
    GENERATE_FUNC(dtype, set_output, opts, tensors[0]);
    opts.setReduceFunction(_get_function(dtype, _reduce_op));
    opts.setTag(_tag);
    opts.setRoot(dst);
    gloo::reduce(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Reduce(
    std::vector<Tensor>& tensors, const ReduceOptions& opts) {
  std::shared_ptr<ReduceGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
  task = std::make_shared<ReduceGlooTask>(rank_, context, tensors,
                                          opts.reduce_op, opts.root_rank, tag);
  task->Run();
  return task;
}

class ScatterGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  ScatterGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
                  std::vector<Tensor>& inputs,   // NOLINT
                  std::vector<Tensor>& outputs,  // NOLINT
                  int src, int size, uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::SCATTER),
        _context(context),
        _inputs(inputs),
        _outputs(outputs),
        _src(src),
        _size(size),
        _tag(tag) {}

  void Run() override { _do_scatter(_inputs, _outputs, _src); }

 private:
  std::shared_ptr<gloo::Context> _context;
  std::vector<Tensor> _inputs;
  std::vector<Tensor> _outputs;
  int _src;
  int _size;
  uint32_t _tag;

  void _do_scatter(std::vector<Tensor>& in, std::vector<Tensor>& out,  // NOLINT
                   int src) {
    const auto& dtype = in[0].type();
    gloo::ScatterOptions opts(_context);
    if (rank_ == src) {
      GENERATE_FUNC(dtype, set_inputs_for_scatter, opts, in, _size);
    }
    GENERATE_FUNC(dtype, set_output, opts, out[0]);
    opts.setRoot(src);
    opts.setTag(_tag);
    gloo::scatter(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Scatter(
    std::vector<Tensor>& in_tensors, std::vector<Tensor>& out_tensors,
    const ScatterOptions& opts) {
  std::shared_ptr<ScatterGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
  task = std::make_shared<ScatterGlooTask>(
      rank_, context, in_tensors, out_tensors, opts.root_rank, size_, tag);
  task->Run();
  return task;
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
std::shared_ptr<::gloo::transport::Device>
ProcessGroupGloo::createDeviceForInterface(const std::string& ifname) {
  ::gloo::transport::tcp::attr attr;
  attr.iface = ifname;
  return ::gloo::transport::tcp::CreateDevice(attr);
}

std::shared_ptr<::gloo::transport::Device>
ProcessGroupGloo::createDeviceForHostname(const std::string& hostname) {
  ::gloo::transport::tcp::attr attr;
  attr.hostname = hostname;
  return ::gloo::transport::tcp::CreateDevice(attr);
}

std::shared_ptr<::gloo::transport::Device>
ProcessGroupGloo::createDefaultDevice() {
  std::array<char, HOST_NAME_MAX> hostname{};
  auto ret = ::gethostname(hostname.data(), HOST_NAME_MAX);
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::Fatal(
                                "Get hostname error for createDefaultDevice."));
  ::addrinfo* result;
  result = tcputils::get_addr_info(hostname.data(), "", 0, AF_UNSPEC);
  ::addrinfo* cur;
  for (cur = result; cur != nullptr; cur = cur->ai_next) {
    SocketType socket =
        ::socket(cur->ai_family, cur->ai_socktype, cur->ai_protocol);
    if (socket == -1) {
      continue;
    }
    ret = ::bind(socket, cur->ai_addr, cur->ai_addrlen);
#ifdef _WIN32
    closesocket(socket);
#else
    close(socket);
#endif
    if (ret == -1) {
      continue;
    }
    break;
  }
  freeaddrinfo(result);
  if (cur != nullptr) {
    return createDeviceForHostname(hostname.data());
  }
  return createDeviceForHostname("127.0.0.1");
}

}  // namespace distributed
}  // namespace paddle