auc_op.cc 4.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
T
typhoonzero 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/metrics/auc_op.h"
T
typhoonzero 已提交
16 17 18 19

namespace paddle {
namespace operators {

T
update  
typhoonzero 已提交
20
class AucOp : public framework::OperatorWithKernel {
T
typhoonzero 已提交
21 22 23 24
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
武毅 已提交
25
  void InferShape(framework::InferShapeContext *ctx) const override {
26 27
    OP_INOUT_CHECK(ctx->HasInput("Predict"), "Input", "Predict", "Auc");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "Auc");
Q
Qiao Longfei 已提交
28
    auto predict_width = ctx->GetInputDim("Predict")[1];
29 30
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_LE(predict_width, 2,
31 32 33
                        platform::errors::InvalidArgument(
                            "Only support binary classification,"
                            "prediction dims[1] should be 1 or 2"));
34
    }
Q
Qiao Longfei 已提交
35
    auto predict_height = ctx->GetInputDim("Predict")[0];
武毅 已提交
36
    auto label_height = ctx->GetInputDim("Label")[0];
T
typhoonzero 已提交
37

38 39
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(predict_height, label_height,
40 41
                        platform::errors::InvalidArgument(
                            "Out and Label should have same height."));
42
    }
T
typhoonzero 已提交
43

T
tangwei12 已提交
44
    int num_pred_buckets = ctx->Attrs().Get<int>("num_thresholds") + 1;
T
tangwei12 已提交
45 46
    int slide_steps = ctx->Attrs().Get<int>("slide_steps");

47 48 49 50 51 52
    PADDLE_ENFORCE_GE(
        num_pred_buckets, 1,
        platform::errors::InvalidArgument("num_thresholds must larger than 1"));
    PADDLE_ENFORCE_GE(slide_steps, 0,
                      platform::errors::InvalidArgument(
                          "slide_steps must be natural number"));
W
Wu Yi 已提交
53

T
typhoonzero 已提交
54
    ctx->SetOutputDim("AUC", {1});
T
tangwei12 已提交
55

H
hutuxian 已提交
56 57 58 59 60 61 62 63 64
    if (slide_steps) {
      ctx->SetOutputDim("StatPosOut",
                        {(1 + slide_steps) * num_pred_buckets + 1});
      ctx->SetOutputDim("StatNegOut",
                        {(1 + slide_steps) * num_pred_buckets + 1});
    } else {
      ctx->SetOutputDim("StatPosOut", {1, num_pred_buckets});
      ctx->SetOutputDim("StatNegOut", {1, num_pred_buckets});
    }
武毅 已提交
65 66 67
  }

 protected:
68
  framework::OpKernelType GetExpectedKernelType(
武毅 已提交
69
      const framework::ExecutionContext &ctx) const override {
70 71
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Predict"),
72
        ctx.device_context());
T
typhoonzero 已提交
73 74 75 76 77
  }
};

class AucOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
78
  void Make() override {
Q
Qiao Longfei 已提交
79 80 81
    AddInput("Predict",
             "A floating point 2D tensor with shape [batch_size, 2], values "
             "are in the range [0, 1]."
武毅 已提交
82
             "Typically, this tensor indicates the probability of each label");
T
auc_op  
typhoonzero 已提交
83
    AddInput("Label",
Q
Qiao Longfei 已提交
84 85
             "A 2D int tensor indicating the label of the training data. "
             "shape: [batch_size, 1]");
T
tangwei12 已提交
86

T
auc_op  
typhoonzero 已提交
87
    // TODO(typhoonzero): support weight input
T
tangwei12 已提交
88 89 90
    AddInput("StatPos", "Statistic value when label = 1");
    AddInput("StatNeg", "Statistic value when label = 0");

T
auc_op  
typhoonzero 已提交
91
    AddOutput("AUC",
T
typhoonzero 已提交
92
              "A scalar representing the "
93
              "current area-under-the-curve.");
T
tangwei12 已提交
94

T
tangwei12 已提交
95 96
    AddOutput("StatPosOut", "Statistic value when label = 1");
    AddOutput("StatNegOut", "Statistic value when label = 0");
T
typhoonzero 已提交
97

T
typhoonzero 已提交
98
    AddAttr<std::string>("curve", "Curve type, can be 'ROC' or 'PR'.")
T
typhoonzero 已提交
99
        .SetDefault("ROC");
T
tangwei12 已提交
100

T
tangwei12 已提交
101 102 103
    AddAttr<int>(
        "num_thresholds",
        "The number of thresholds to use when discretizing the roc curve.")
T
tangwei12 已提交
104
        .SetDefault((2 << 12) - 1);
T
tangwei12 已提交
105 106
    AddAttr<int>("slide_steps", "Use slide steps to calc batch auc.")
        .SetDefault(1);
107 108
    AddComment(R"DOC(
Area Under The Curve (AUC) Operator.
武毅 已提交
109

110 111
This implementation computes the AUC according to forward output and label.
It is used very widely in binary classification evaluation. As a note:
武毅 已提交
112
If input label contains values other than 0 and 1, it will be cast
113
to bool. You can find the relevant definitions here:
武毅 已提交
114 115
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve

116 117 118
There are two types of possible curves:
1. ROC: Receiver operating characteristic
2. PR: Precision Recall
武毅 已提交
119
)DOC");
T
typhoonzero 已提交
120 121 122 123 124 125 126
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
update  
typhoonzero 已提交
127
REGISTER_OP_WITHOUT_GRADIENT(auc, ops::AucOp, ops::AucOpMaker);
T
typhoonzero 已提交
128
REGISTER_OP_CPU_KERNEL(auc, ops::AucKernel<paddle::platform::CPUPlace, float>);