mul_op.cc 6.5 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/operators/mul_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dongzhihong 已提交
20 21
using framework::Tensor;

22
class MulOpShapeInference : public framework::InferShapeBase {
Y
Yu Yang 已提交
23
 public:
24
  void operator()(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26 27 28 29 30 31
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MulOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
32

Q
Qiao Longfei 已提交
33 34
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
35

Y
Yu Yang 已提交
36 37 38 39
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;

40 41 42 43 44 45 46 47
    PADDLE_ENFORCE_GT(
        x_dims.size(), x_num_col_dims,
        "The input tensor X's rank of MulOp should be larger than "
        "x_num_col_dims.");
    PADDLE_ENFORCE_GT(
        y_dims.size(), y_num_col_dims,
        "The input tensor Y's rank of MulOp should be larger than "
        "y_num_col_dims.");
48

F
fengjiayi 已提交
49 50
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
51

Y
Yan Chunwei 已提交
52
    PADDLE_ENFORCE_EQ(
53
        x_mat_dims[1], y_mat_dims[0],
54
        "First matrix's width must be equal with second matrix's height.");
Y
Yu Yang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
68
    ctx->ShareLoD("X", /*->*/ "Out");
69 70 71
  }
};

D
dongzhihong 已提交
72
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
73
 public:
74
  MulOpMaker(OpProto* proto, OpAttrChecker* op_checker)
75
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
76 77 78
    AddInput("X", "The first input tensor of the mul op.");
    AddInput("Y", "The second input tensor of the mul op.");
    AddOutput("Out", "The output tensor of the mul op.");
F
WIP  
fengjiayi 已提交
79
    AddAttr<int>(
F
fengjiayi 已提交
80
        "x_num_col_dims",
K
kexinzhao 已提交
81
        "(int, default 1) "
C
caoying03 已提交
82 83
        R"DOC(The mul_op can take tensors with more than two dimensions as its
              inputs. If the input `X` is a tensor with more than two
C
caoying03 已提交
84 85 86 87 88 89 90 91 92 93 94 95
              dimensions, `X` will be flattened into a two-dimensional matrix
              first. The flattening rule is: the first `num_col_dims` will be
              flattened to form the first dimension of the final matrix (height
              of the matrix), and the rest `rank(X) - num_col_dims` dimensions
              are flattened to form the second dimension of the final matrix (
              width of the matrix). As a result, height of the flattened matrix
              is equal to the product of `X`'s first `x_num_col_dims` dimensions'
              sizes, and width of the flattened matrix is equal to the product
              of `X`'s last `rank(x) - num_col_dims` dimensions' size.
              For example, suppose `X` is a 6-dimensional tensor with the shape
              [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Then, the flattened
              matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
F
fengjiayi 已提交
96
        )DOC")
F
WIP  
fengjiayi 已提交
97
        .SetDefault(1)
F
fengjiayi 已提交
98
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
99
    AddAttr<int>(
F
fengjiayi 已提交
100
        "y_num_col_dims",
K
kexinzhao 已提交
101
        "(int, default 1) "
C
caoying03 已提交
102 103 104
        R"DOC(The mul_op can take tensors with more than two dimensions as its
              inputs. If the input `Y` is a tensor with more than two
              dimensions, `Y` will be flatten into a two-dimensional matrix
C
caoying03 已提交
105 106
              first. The attribute `y_num_col_dims` determines how `Y` is
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
107
        )DOC")
F
WIP  
fengjiayi 已提交
108
        .SetDefault(1)
F
fengjiayi 已提交
109
        .EqualGreaterThan(1);
110
    AddComment(R"DOC(
C
caoying03 已提交
111
Mul Operator.
K
kexinzhao 已提交
112 113

This operator is used to perform matrix multiplication for input X and Y.
114

115 116
The equation is:

K
kexinzhao 已提交
117
    $$Out = X * Y$$
118 119

Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
120 121
or not. But the output only shares the LoD information with input `X`.

122 123 124 125
)DOC");
  }
};

D
dongzhihong 已提交
126
class MulOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
127 128 129
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

130
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
131 132 133 134 135 136 137
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
138

Q
Qiao Longfei 已提交
139 140 141 142
    auto x_mat_dims = framework::flatten_to_2d(
        x_dims, ctx->Attrs().Get<int>("x_num_col_dims"));
    auto y_mat_dims = framework::flatten_to_2d(
        y_dims, ctx->Attrs().Get<int>("y_num_col_dims"));
143

Q
Qiao Longfei 已提交
144 145 146 147 148 149 150 151 152
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
153 154 155
  }
};

156 157 158
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
159
namespace ops = paddle::operators;
160 161 162 163
REGISTER_OPERATOR(mul, paddle::framework::OperatorWithKernel, ops::MulOpMaker,
                  ops::MulOpShapeInference,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(mul_grad, ops::MulOpGrad);
Q
QI JUN 已提交
164 165 166 167
REGISTER_OP_CPU_KERNEL(
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>);