refer.h 18.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once
16 17 18

#include <cmath>
#include <limits>
19
#include <string>
W
wanghuancoder 已提交
20

21
#include "paddle/fluid/operators/jit/helper.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernel_base.h"
T
tensor-tang 已提交
23 24 25 26
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {
T
tensor-tang 已提交
27
namespace jit {
T
tensor-tang 已提交
28 29
namespace refer {

30
// Refer code only focus on correctness
T
tensor-tang 已提交
31 32 33 34 35 36 37
template <typename T>
void VMul(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
}

T
tensor-tang 已提交
38
template <typename T>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
void VAdd(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

template <typename T>
void VAddRelu(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
    z[i] = z[i] > 0 ? z[i] : 0;
  }
}

template <typename T>
void VSub(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
}

template <typename T>
void VScal(const T* a, const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = a[0] * x[i];
  }
}

67 68 69 70 71 72 73
template <typename T>
void VAddBias(const T* a, const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = a[0] + x[i];
  }
}

74 75 76 77 78
template <typename T>
void VCopy(const T* x, T* y, int n) {
  std::memcpy(y, x, n * sizeof(T));
}

79 80 81 82 83 84 85 86 87
// x shape: (x_len)
// y shape: (h, x_len)
template <typename T>
void VBroadcast(const T* x, T* y, int64_t y_h, int64_t x_len) {
  for (int64_t h = 0; h < y_h; ++h) {
    VCopy(x, y + h * x_len, x_len);
  }
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101
template <typename T>
void VRelu(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

template <typename T>
inline void VIdentity(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i];
  }
}

T
tensor-tang 已提交
102 103 104 105 106 107 108
template <typename T>
inline void VSquare(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] * x[i];
  }
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
template <typename T>
void VExp(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
}

template <typename T>
void VSigmoid(const T* x, T* y, int n) {
  // y = 1 / (1 + e^-x)
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-tmp));
  }
}

template <typename T>
void VTanh(const T* x, T* y, int n) {
  // y = 2 * sigmoid(2x) - 1
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * x[i];
  }
  VSigmoid(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
  }
}

T
tensor-tang 已提交
139 140
template <typename T>
void (*getActFunc(KernelType type))(const T*, T*, int) {  // NOLINT
T
tensor-tang 已提交
141
  if (type == kVSigmoid) {
T
tensor-tang 已提交
142
    return VSigmoid<T>;
T
tensor-tang 已提交
143
  } else if (type == kVRelu) {
T
tensor-tang 已提交
144
    return VRelu<T>;
T
tensor-tang 已提交
145
  } else if (type == kVTanh) {
T
tensor-tang 已提交
146
    return VTanh<T>;
T
tensor-tang 已提交
147
  } else if (type == kVIdentity) {
T
tensor-tang 已提交
148 149
    return VIdentity<T>;
  }
G
GaoWei8 已提交
150 151
  PADDLE_THROW(platform::errors::Unimplemented(
      "Act JIT kernel do not support type: %s.", type));
T
tensor-tang 已提交
152 153 154
  return nullptr;
}

155 156
// TODO(TJ): add refer gemm and make LSTM kernels combine as same GRU kernels

T
tensor-tang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
// compute ct and ht
template <typename T>
void LSTMCtHt(lstm_t* step, const lstm_attr_t* attr) {
  T* gates = reinterpret_cast<T*>(step->gates);
  const T* ct_1 = reinterpret_cast<const T*>(step->ct_1);
  T* ct = reinterpret_cast<T*>(step->ct);
  T* ht = reinterpret_cast<T*>(step->ht);
  const T* wp = reinterpret_cast<const T*>(step->wp);
  T* checked = reinterpret_cast<T*>(step->checked);
  auto act_gate = getActFunc<T>(attr->act_gate);
  auto act_cand = getActFunc<T>(attr->act_cand);
  auto act_cell = getActFunc<T>(attr->act_cell);
  int d = attr->d;
  int d2 = d * 2;
  int d3 = d * 3;
  // gates: W_ch, W_ih, W_fh, W_oh
  if (attr->use_peephole) {
    VMul(wp, ct_1, checked, d);
    VMul(wp + d, ct_1, checked + d, d);
    VAdd(checked, gates + d, gates + d, d2);
    act_gate(gates + d, gates + d, d2);
  } else {
    act_gate(gates + d, gates + d, d3);
  }

  // C_t = C_t-1 * fgated + cand_gated * igated
  act_cand(gates, gates, d);
  VMul(gates, gates + d, gates + d, d);
  VMul(ct_1, gates + d2, gates + d2, d);
  VAdd(gates + d, gates + d2, ct, d);

  if (attr->use_peephole) {
    // get ogated
    VMul(wp + d2, ct, gates + d, d);
    VAdd(gates + d, gates + d3, gates + d3, d);
    act_gate(gates + d3, gates + d3, d);
  }
  // H_t = act_cell(C_t) * ogated
  act_cell(ct, gates + d2, d);
  VMul(gates + d2, gates + d3, ht, d);
}

// compute c1 and h1 without c0 or h0
template <typename T>
void LSTMC1H1(lstm_t* step, const lstm_attr_t* attr) {
  T* gates = reinterpret_cast<T*>(step->gates);
  T* ct = reinterpret_cast<T*>(step->ct);
  T* ht = reinterpret_cast<T*>(step->ht);
  auto act_gate = getActFunc<T>(attr->act_gate);
  auto act_cand = getActFunc<T>(attr->act_cand);
  auto act_cell = getActFunc<T>(attr->act_cell);
  int d = attr->d;
  int d2 = d * 2;
  int d3 = d * 3;
  /* C_t = igated * cgated*/
  act_gate(gates + d, gates + d, d);
  act_cand(gates, gates, d);
  VMul(gates, gates + d, ct, d);
  if (attr->use_peephole) {
    // get outgated, put W_oc * C_t on igated
    const T* wp = reinterpret_cast<const T*>(step->wp);
    VMul(wp + d2, ct, gates + d, d);
    VAdd(gates + d, gates + d3, gates + d3, d);
  }
  /* H_t = act_cell(C_t) * ogated */
  act_gate(gates + d3, gates + d3, d);
  act_cell(ct, gates + d2, d);
  VMul(gates + d2, gates + d3, ht, d);
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
// compute h1 without h0
template <typename T>
void GRUH1(gru_t* step, const gru_attr_t* attr) {
  T* gates = reinterpret_cast<T*>(step->gates);
  T* ht = reinterpret_cast<T*>(step->ht);
  auto act_gate = getActFunc<T>(attr->act_gate);
  auto act_cand = getActFunc<T>(attr->act_cand);
  int d = attr->d;
  int d2 = d * 2;
  act_gate(gates, gates, d);
  act_cand(gates + d2, gates + d2, d);
  VMul(gates, gates + d2, ht, d);
}

// compute the first part of GRU: ht = act_gate(r) * ht_1
template <typename T>
void GRUHtPart1(gru_t* step, const gru_attr_t* attr) {
  // W: {W_update, W_reset; W_state}
  T* gates = reinterpret_cast<T*>(step->gates);
  T* ht = reinterpret_cast<T*>(step->ht);
  const T* ht_1 = reinterpret_cast<const T*>(step->ht_1);
  auto act_gate = getActFunc<T>(attr->act_gate);
  act_gate(gates + attr->d, gates + attr->d, attr->d);
  VMul(ht_1, gates + attr->d, ht, attr->d);
}

// compute the second part of GRU:
// ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1
template <typename T>
void GRUHtPart2(gru_t* step, const gru_attr_t* attr) {
  T* gates = reinterpret_cast<T*>(step->gates);
  T* ht = reinterpret_cast<T*>(step->ht);
  const T* ht_1 = reinterpret_cast<const T*>(step->ht_1);
  auto act_gate = getActFunc<T>(attr->act_gate);
  auto act_cand = getActFunc<T>(attr->act_cand);
  int d = attr->d;
  T* y = gates + d * 2;
  act_gate(gates, gates, d);
  act_cand(y, y, d);
  // out = zt*ht~ + (1-zt)*ht_1
  for (int i = 0; i < d; ++i) {
    ht[i] = gates[i] * y[i] + (static_cast<T>(1) - gates[i]) * ht_1[i];
  }
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
template <typename T>
void CRFDecoding(const int seq_len, const T* x, const T* w, T* alpha,
                 int* track, int right) {
  constexpr int state_trans_base_idx = 2;
  for (int i = 0; i < right; ++i) {
    alpha[i] = w[i] + x[i];
  }
  for (int k = 1; k < seq_len; ++k) {
    for (int i = 0; i < right; ++i) {
      T max_score = -std::numeric_limits<T>::max();
      int max_j = 0;
      for (int j = 0; j < right; ++j) {
        T score = alpha[(k - 1) * right + j] +
                  w[(j + state_trans_base_idx) * right + i];
        if (score > max_score) {
          max_score = score;
          max_j = j;
        }
      }
      alpha[k * right + i] = max_score + x[k * right + i];
      track[k * right + i] = max_j;
    }
  }
}

template <typename T>
void LayerNorm(T* x, T* out, T* mean, T* var, const T* scale, const T* bias,
               int height, const float epsilon, int right) {
  // get mean
  for (int i = 0; i < height; i++) {
    T sum = 0.0;
    int offset = i * right;
    for (int j = 0; j < right; j++) {
      sum += x[offset + j];
    }
    mean[i] = sum / right;
  }

  // get variance
  for (int i = 0; i < height; i++) {
    T sum = 0.0;
    int offset = i * right;
    for (int j = 0; j < right; j++) {
      sum += (x[offset + j] - mean[i]) * (x[offset + j] - mean[i]);
    }
    var[i] = sum / right;
  }

  for (int i = 0; i < height; i++) {
    int offset = i * right;
    T sqrt_var = std::sqrt(var[i] + (T)epsilon);
    for (int j = 0; j < right; j++) {
      out[offset + j] = (x[offset + j] - mean[i]) / sqrt_var;
    }
  }
  if (scale) {
    for (int i = 0; i < height; i++) {
      int offset = i * right;
      for (int j = 0; j < right; j++) {
        out[offset + j] *= scale[j];
      }
    }
  }

  if (bias) {
    for (int i = 0; i < height; i++) {
      int offset = i * right;
      for (int j = 0; j < right; j++) {
        out[offset + j] += bias[j];
      }
    }
  }
}

T
tensor-tang 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358
template <typename T>
void NCHW16CMulNC(const T* x, const T* y, T* z, int height, int width) {
  int offset = 0;
  for (int h = 0; h < height; ++h) {
    for (int w = 0; w < width; ++w) {
      for (int i = 0; i < 16; ++i) {
        z[i + offset] = y[i] * x[i + offset];
      }
      offset += ZMM_FLOAT_BLOCK;
    }
  }
}

T
tensor-tang 已提交
359 360 361 362 363 364 365 366 367 368 369
template <typename T>
void SeqPool(const T* x, T* y, const seq_pool_attr_t* attr) {
  for (int w = 0; w < attr->w; ++w) {
    const T* src = x + w;
    T* dst = y + w;
    *dst = static_cast<T>(0);
    for (int h = 0; h < attr->h; ++h) {
      *dst = *dst + *src;
      src += attr->w;
    }
  }
370 371 372 373 374 375 376 377 378
  if (attr->type == SeqPoolType::kAvg || attr->type == SeqPoolType::kSqrt) {
    T scalar = static_cast<T>(1);
    if (attr->type == SeqPoolType::kAvg) {
      scalar = scalar / static_cast<T>(attr->h);
    } else {
      scalar = scalar / std::sqrt(static_cast<T>(attr->h));
    }
    VScal<T>(&scalar, y, y, attr->w);
  }
T
tensor-tang 已提交
379 380
}

T
tensor-tang 已提交
381 382
// A(M,K) * B(K,N) = C(M,N)
template <typename T>
383 384 385 386
void MatMul(const T* A, const T* B, T* C, const matmul_attr_t* attr) {
  int M = attr->m;
  int N = attr->n;
  int K = attr->k;
387 388 389 390 391
  for (int m = 0; m < M; ++m) {
    const T* pa = A + m * K;
    T* pc = C + m * N;
    for (int n = 0; n < N; ++n) {
      const T* pb = B + n;
392 393 394
      pc[n] = pa[0] * pb[0];
      for (int k = 1; k < K; ++k) {
        pc[n] += pa[k] * pb[k * N];
395 396 397 398
      }
    }
  }
}
T
tensor-tang 已提交
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
template <typename T>
void HMax(const T* x, T* res, int n) {
  res[0] = x[0];
  for (int i = 1; i < n; ++i) {
    res[0] = res[0] < x[i] ? x[i] : res[0];
  }
}

template <typename T>
void HSum(const T* x, T* res, int n) {
  res[0] = x[0];
  for (int i = 1; i < n; ++i) {
    res[0] += x[i];
  }
}

416
template <typename T>
D
dengkaipeng 已提交
417
void StrideASum(const T* x, T* res, int n, int stride) {
418
  res[0] = x[0];
D
dengkaipeng 已提交
419
  for (int i = stride; i < n; i += stride) {
D
dengkaipeng 已提交
420
    res[0] += std::abs(x[i]);
421 422 423 424
  }
}

template <typename T>
D
dengkaipeng 已提交
425
void StrideScal(const T* a, const T* x, T* y, int n, int stride) {
D
dengkaipeng 已提交
426 427 428 429 430 431
  for (int i = 0; i < n; ++i) {
    if (i % stride == 0) {
      y[i] = x[i] * a[0];
    } else {
      y[i] = x[i];
    }
432 433 434
  }
}

435 436
// y = e^(x - max(x))
// y = y / sum(y)
D
dengkaipeng 已提交
437
// remain is the product of dimension shapes after the axis dimension
438
template <typename T>
D
dengkaipeng 已提交
439
void Softmax(const T* x, T* y, int n, int bs = 1, int remain = 1) {
440 441 442 443 444 445
  for (int i = 0; i < bs; ++i) {
    T scalar;
    HMax(x, &scalar, n);
    scalar = static_cast<T>(0) - scalar;
    VAddBias(&scalar, x, y, n);  // x - max
    VExp(y, y, n);
D
dengkaipeng 已提交
446
    if (remain == 1) {
447 448 449 450
      HSum(y, &scalar, n);
      scalar = static_cast<T>(1) / scalar;
      VScal(&scalar, y, y, n);
    } else {
D
dengkaipeng 已提交
451 452
      for (int j = 0; j < remain; j++) {
        StrideASum(&y[j], &scalar, n, remain);
453
        scalar = static_cast<T>(1) / scalar;
D
dengkaipeng 已提交
454
        StrideScal(&scalar, &y[j], &y[j], n, remain);
455 456
      }
    }
457 458 459 460 461
    x += n;
    y += n;
  }
}

462 463 464 465 466 467 468
// embedding seq pool
// table is a matrix with (tbl_h, tbl_w)
// idx is a matrix with (idx_h, idx_w)
// output is a vector with length tbl_w * idx_w
template <typename T>
void EmbSeqPool(const T* table, const int64_t* idx, T* out,
                const emb_seq_pool_attr_t* attr) {
G
GaoWei8 已提交
469 470 471 472 473 474 475
  PADDLE_ENFORCE_EQ(
      attr->table_width * attr->index_width, attr->out_width,
      platform::errors::InvalidArgument(
          "The attribute table_width * index_width of EmbSeqPool should "
          "be equal to out_width. But table_width * index_width is %d and "
          "out_width is %d.",
          attr->table_width * attr->index_width, attr->out_width));
476 477

  auto check_idx_value_valid = [&](int64_t i) {
G
GaoWei8 已提交
478 479 480 481 482 483 484 485 486 487
    PADDLE_ENFORCE_LT(
        idx[i], attr->table_height,
        platform::errors::InvalidArgument(
            "The idx shoud be lower than the attribute table_height of "
            "EmbSeqPool. But %dth of idx is %d and table_height is %d.",
            i, idx[i], attr->table_height));
    PADDLE_ENFORCE_GE(idx[i], 0, platform::errors::InvalidArgument(
                                     "The idx shoud be equal to or larger than "
                                     "the 0. But %dth of idx is %d.",
                                     i, idx[i]));
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  };

  for (int64_t w = 0; w != attr->index_width; ++w) {
    check_idx_value_valid(w);
    std::memcpy(out + w * attr->table_width, table + idx[w] * attr->table_width,
                attr->table_width * sizeof(T));
  }

  for (int64_t h = 1; h < attr->index_height; ++h) {
    for (int64_t w = 0; w < attr->index_width; ++w) {
      int64_t i = h * attr->index_width + w;
      check_idx_value_valid(i);
      VAdd(table + idx[i] * attr->table_width, out + w * attr->table_width,
           out + w * attr->table_width, attr->table_width);
    }
  }
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
// SGD algorithm:
// lr is pointor of learning rate scalar
// param is an input matrix with (param_h, param_w)
// grad is an input matrix with (grad_h, grad_w), here grad_w == param_w
// selected_rows is a vectot<int64_t> with size selected_rows_size( <= grad_h )
// out is an output matrix with (param_h, param_w)
//
// support both regular and sparse grad
// regular SGD: out[:] = param[:] - lr[0] * grad[:];
// sparse SGD: out[rows[i]][:] = param[rows[i]][:] - lr[0] * grad[i][:]
//
// Note: when use sparse SGD, and if out != param,
// the out rows which are not selected have not beed changed, which maybe empty
template <typename T>
void Sgd(const T* lr, const T* param, const T* grad, const int64_t* rows,
         T* out, const sgd_attr_t* attr) {
G
GaoWei8 已提交
522 523 524 525 526 527 528 529 530 531 532 533
  PADDLE_ENFORCE_EQ(attr->param_width, attr->grad_width,
                    platform::errors::InvalidArgument(
                        "The attribute param_width of Sgd should be "
                        "equal to the attribute grad_width. But param_width "
                        "is %d and grad_width is %d.",
                        attr->param_width, attr->grad_width));
  PADDLE_ENFORCE_LE(attr->selected_rows_size, attr->grad_height,
                    platform::errors::InvalidArgument(
                        "The attribute selected_rows_size of Sgd should be "
                        "equal to or less than the attribute grad_height. "
                        "But selected_rows_size is %d and grad_height is %d.",
                        attr->selected_rows_size, attr->grad_height));
534 535
  for (int64_t i = 0; i < attr->selected_rows_size; ++i) {
    auto h_idx = rows[i];
G
GaoWei8 已提交
536 537 538 539 540 541 542 543 544 545 546
    PADDLE_ENFORCE_LT(h_idx, attr->param_height,
                      platform::errors::InvalidArgument(
                          "The rows of Sgd should be "
                          "less than the attribute. But %dth of rows "
                          "is %d and grad_width is %d.",
                          i, h_idx, attr->param_height));
    PADDLE_ENFORCE_GE(h_idx, 0, platform::errors::InvalidArgument(
                                    "The rows of Sgd should be "
                                    "larger than 0. But %dth of rows "
                                    "is %d.",
                                    i, h_idx));
547 548 549 550 551 552 553 554
    for (int64_t j = 0; j < attr->grad_width; ++j) {
      out[h_idx * attr->grad_width + j] =
          param[h_idx * attr->grad_width + j] -
          lr[0] * grad[i * attr->grad_width + j];
    }
  }
}

555 556 557 558 559 560 561 562 563 564 565 566 567
template <typename T>
void Adam(T beta1, T beta2, T lr, T eps, int64_t numel, const T* grad_ptr,
          const T* mom1_ptr, const T* mom2_ptr, const T* param_ptr,
          T* mom1_out_ptr, T* mom2_out_ptr, T* param_out_ptr) {
  for (int i = 0; i < numel; ++i) {
    mom1_out_ptr[i] = beta1 * mom1_ptr[i] + (1 - beta1) * grad_ptr[i];
    mom2_out_ptr[i] =
        beta2 * mom2_ptr[i] + (1 - beta2) * grad_ptr[i] * grad_ptr[i];
    param_out_ptr[i] =
        param_ptr[i] + lr * (mom1_out_ptr[i] / (sqrt(mom2_out_ptr[i]) + eps));
  }
}

568 569 570 571 572
#define DECLARE_REFER_KERNEL(name)                          \
  template <typename T>                                     \
  class name##Kernel : public ReferKernel<name##Tuple<T>> { \
   public:                                                  \
    name##Kernel() { this->func = name<T>; }                \
573 574
  }

575
// const T* x, const T* y, T* z, int n
576 577 578 579
DECLARE_REFER_KERNEL(VMul);
DECLARE_REFER_KERNEL(VAdd);
DECLARE_REFER_KERNEL(VAddRelu);
DECLARE_REFER_KERNEL(VSub);
580

581
// const T* a, const T* x, T* y, int n
582 583
DECLARE_REFER_KERNEL(VScal);
DECLARE_REFER_KERNEL(VAddBias);
584

585 586 587
// const T* a, const T* x, T* y, int n, int stride
DECLARE_REFER_KERNEL(StrideScal);

588
// const T* x, T* y, int n
589 590 591 592 593 594 595
DECLARE_REFER_KERNEL(VRelu);
DECLARE_REFER_KERNEL(VIdentity);
DECLARE_REFER_KERNEL(VExp);
DECLARE_REFER_KERNEL(VSigmoid);
DECLARE_REFER_KERNEL(VTanh);
DECLARE_REFER_KERNEL(VSquare);
DECLARE_REFER_KERNEL(VCopy);
596

597
// lstm_t*, const lstm_attr_t*
598 599
DECLARE_REFER_KERNEL(LSTMCtHt);
DECLARE_REFER_KERNEL(LSTMC1H1);
T
tensor-tang 已提交
600

601
// gru_t*, const gru_attr_t*
602 603 604 605 606 607 608
DECLARE_REFER_KERNEL(GRUH1);
DECLARE_REFER_KERNEL(GRUHtPart1);
DECLARE_REFER_KERNEL(GRUHtPart2);

DECLARE_REFER_KERNEL(HMax);
DECLARE_REFER_KERNEL(HSum);

D
dengkaipeng 已提交
609
DECLARE_REFER_KERNEL(StrideASum);
610

611 612 613 614 615 616 617 618
// others
DECLARE_REFER_KERNEL(CRFDecoding);
DECLARE_REFER_KERNEL(LayerNorm);
DECLARE_REFER_KERNEL(NCHW16CMulNC);
DECLARE_REFER_KERNEL(SeqPool);
DECLARE_REFER_KERNEL(MatMul);
DECLARE_REFER_KERNEL(Softmax);
DECLARE_REFER_KERNEL(EmbSeqPool);
619
DECLARE_REFER_KERNEL(Adam);
620 621
DECLARE_REFER_KERNEL(Sgd);
DECLARE_REFER_KERNEL(VBroadcast);
622

623
#undef DECLARE_REFER_KERNEL
T
tensor-tang 已提交
624

T
tensor-tang 已提交
625
}  // namespace refer
T
tensor-tang 已提交
626
}  // namespace jit
T
tensor-tang 已提交
627 628
}  // namespace operators
}  // namespace paddle