benchmark_utils.cc 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/tests/performance_tests/benchmark_utils.h"

#include <iostream>
#include <memory>
#include <set>
#include <string>
#include <vector>

// Eager
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#include "paddle/fluid/eager/utils.h"

// Eager Generated
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"

// Fluid
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/basic_engine.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/memory/memcpy.h"

static size_t max_num_benchmark_runs = 5000;

namespace egr {

/* --------------------- */
/* ---- Eager Scale ---- */
/* --------------------- */
void benchmark_eager_scale(const EagerTensor& tensor, bool accuracy_check) {
  EagerTensor input_tensor = tensor;
  float scale = 2.0;
  float bias = 3.0;

  size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    input_tensor =
        egr::scale(input_tensor, scale, bias, true /*bias_after_scale*/,
                   true /*trace_backward*/);
  }

  std::vector<EagerTensor> target_tensors = {input_tensor};
  RunBackward(target_tensors, {});

  if (accuracy_check) {
    // Examine Forward Grad (w.r.t max_num_runs = 10)
63
    eager_test::CompareTensorWithValue<float>(input_tensor, 8189.0);
64
    // Examine Backward Grad (w.r.t max_num_runs = 10)
65
    eager_test::CompareGradTensorWithValue<float>(tensor, 1024.0);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  }
}

/* ----------------------------------- */
/* ---- Eager Intermediate Matmul ---- */
/* ----------------------------------- */
void benchmark_eager_intermediate_matmul(const EagerTensor& X,
                                         const EagerTensor& Y,
                                         bool accuracy_check) {
  EagerTensor input_tensor0 = X;

  size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    input_tensor0 = matmul_v2_dygraph_function(
        input_tensor0, Y, {{"trans_x", false}, {"trans_y", false}});
  }

  std::vector<EagerTensor> target_tensors = {input_tensor0};
  RunBackward(target_tensors, {});

  if (accuracy_check) {
    // Examine Forward Grad (w.r.t max_num_runs = 2)
88
    eager_test::CompareVariableWithValue<float>(input_tensor0, 16);
89
    // Examine Backward Grad (w.r.t max_num_runs = 2)
90 91
    eager_test::CompareGradVariableWithValue<float>(X, 16);
    eager_test::CompareGradVariableWithValue<float>(Y, 16);
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  }
}

/* -------------------------------- */
/* ---- Eager Intermediate MLP ---- */
/* -------------------------------- */
void benchmark_eager_intermediate_mlp(const EagerTensor& X,
                                      const std::vector<EagerTensor>& Ws,
                                      const std::vector<EagerTensor>& Bs,
                                      bool accuracy_check) {
  EagerTensor input0 = X;

  for (size_t i = 0; i < MLP_NUM_LINEAR; i++) {
    EagerTensor Out = matmul_v2_dygraph_function(
        input0, Ws[i], {{"trans_x", false}, {"trans_y", false}});

    input0 = elementwise_add_dygraph_function(Out, Bs[i], {});
  }

  EagerTensor Out = reduce_sum_dygraph_function(input0, {{"reduce_all", true}});

  std::vector<EagerTensor> target_tensors = {Out};
  RunBackward(target_tensors, {});

  if (accuracy_check) {
    std::unordered_map<std::string, float> result =
        compute_mlp_expected_results();

    // Examine Forward Grad (w.r.t max_num_runs = 2)
121
    eager_test::CompareVariableWithValue<float>(Out, result["Out"]);
122 123

    // Examine Backward Grad (w.r.t max_num_runs = 2)
124 125
    eager_test::CompareGradVariableWithValue<float>(X, result["GradX"]);
    eager_test::CompareGradVariableWithValue<float>(Ws[0], result["GradW"]);
126 127 128 129 130 131 132 133 134 135 136 137 138 139
  }
}

}  // namespace egr

namespace paddle {
namespace imperative {

static void FluidCheckTensorValue(const std::shared_ptr<imperative::VarBase>& X,
                                  const paddle::platform::Place& place,
                                  float value) {
  auto* tensor = X->MutableVar()->GetMutable<framework::LoDTensor>();
  float* t_ptr = tensor->mutable_data<float>(place);
  std::vector<float> host_data(tensor->numel());
140 141

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
142 143 144 145 146 147 148 149 150 151 152 153
  if (place == paddle::platform::CUDAPlace()) {
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
    auto* dev_ctx =
        dynamic_cast<paddle::platform::CUDADeviceContext*>(pool.Get(place));
    auto stream = dev_ctx->stream();

    paddle::memory::Copy(paddle::platform::CPUPlace(), host_data.data(),
                         paddle::platform::CUDAPlace(), t_ptr,
                         sizeof(float) * tensor->numel(), stream);
    t_ptr = host_data.data();
  }
154 155
#endif

156 157 158 159 160 161 162 163 164 165 166 167 168
  VLOG(6) << "Tensor Value: " << t_ptr[0] << ", Expected Value: " << value;
  PADDLE_ENFORCE(
      t_ptr[0] == value,
      paddle::platform::errors::Fatal(
          "Detected numerical Error, Expected %f but got %f", value, t_ptr[0]));
}

static void FluidCheckGradTensorValue(
    const std::shared_ptr<imperative::VarBase>& X,
    const paddle::platform::Place& place, float value) {
  auto* grad_tensor = X->MutableGradVar()->GetMutable<framework::LoDTensor>();
  float* g_ptr = grad_tensor->mutable_data<float>(place);
  std::vector<float> g_host_data(grad_tensor->numel());
169 170

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
171 172 173 174 175 176 177 178 179 180 181 182
  if (place == paddle::platform::CUDAPlace()) {
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
    auto* dev_ctx =
        dynamic_cast<paddle::platform::CUDADeviceContext*>(pool.Get(place));
    auto stream = dev_ctx->stream();

    paddle::memory::Copy(paddle::platform::CPUPlace(), g_host_data.data(),
                         paddle::platform::CUDAPlace(), g_ptr,
                         sizeof(float) * grad_tensor->numel(), stream);
    g_ptr = g_host_data.data();
  }
183 184
#endif

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  VLOG(6) << "Tensor Value: " << g_ptr[0] << ", Expected Value: " << value;
  PADDLE_ENFORCE(
      g_ptr[0] == value,
      paddle::platform::errors::Fatal(
          "Detected numerical Error, Expected %f but got %f", value, g_ptr[0]));
}

/* --------------------- */
/* ---- Fluid Scale ---- */
/* --------------------- */
// TODO(jiabin): Change this and remove nolint
void benchmark_fluid_scale(const std::shared_ptr<imperative::VarBase>& X,
                           const paddle::platform::Place& place,
                           bool accuracy_check) {
  imperative::Tracer tracer;
  framework::AttributeMap attrs;

  attrs["use_mkldnn"] = false;
  attrs["scale"] = 2;
  attrs["bias"] = 3;
  attrs["bias_after_scale"] = true;

  std::shared_ptr<imperative::VarBase> tmp_out = X;

  size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    imperative::NameVarBaseMap ins = {{"X", {tmp_out}}};
    imperative::NameVarBaseMap outs = {
        {"Out",
         {std::shared_ptr<imperative::VarBase>(
             new imperative::VarBase(true, "Out"))}}};

    tracer.TraceOp("scale", ins, outs, attrs, place, true);

    tmp_out = outs["Out"][0];
  }

  auto* engine = tracer.GetEngine();
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/);
  engine->Execute();

  if (accuracy_check) {
    FluidCheckTensorValue(tmp_out, place, 8189.0);
    FluidCheckGradTensorValue(X, place, 1024.0);
  }
}

/* ---------------------- */
/* ---- Fluid Matmul ---- */
/* ---------------------- */
void benchmark_fluid_matmul(const std::shared_ptr<imperative::VarBase>& X,
                            const std::shared_ptr<imperative::VarBase>& Y,
                            const paddle::platform::Place& place,
                            bool accuracy_check) {
  imperative::Tracer tracer;

  std::shared_ptr<imperative::VarBase> tmp_out = X;

  size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    framework::AttributeMap attrs;
    imperative::NameVarBaseMap ins = {{"X", {tmp_out}}, {"Y", {Y}}};
    imperative::NameVarBaseMap outs = {
        {"Out",
         {std::shared_ptr<imperative::VarBase>(
             new imperative::VarBase(true, "Out"))}}};

    tracer.TraceOp("matmul_v2", ins, outs, attrs, place, true);

    tmp_out = outs["Out"][0];
  }

  auto* engine = tracer.GetEngine();
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/);
  engine->Execute();

  if (accuracy_check) {
    FluidCheckTensorValue(tmp_out, place, 16);
    FluidCheckGradTensorValue(X, place, 16);
    FluidCheckGradTensorValue(Y, place, 16);
  }
}

/* ------------------- */
/* ---- Fluid MLP ---- */
/* ------------------- */
void benchmark_fluid_mlp(
    const std::shared_ptr<imperative::VarBase>& X,
    const std::vector<std::shared_ptr<imperative::VarBase>>& Ws,
    const std::vector<std::shared_ptr<imperative::VarBase>>& Bs,
    const paddle::platform::Place& place, bool accuracy_check) {
  imperative::Tracer tracer;

  imperative::NameVarBaseMap ins;
  imperative::NameVarBaseMap outs;
  framework::AttributeMap attrs;
  std::shared_ptr<imperative::VarBase> input0 = X;
  for (size_t i = 0; i < MLP_NUM_LINEAR; i++) {
    // Matmul0
    ins = {{"X", {input0}}, {"Y", {Ws[0]}}};
    outs = {{"Out",
             {std::shared_ptr<imperative::VarBase>(
                 new imperative::VarBase(true, "Out"))}}};

    tracer.TraceOp("matmul_v2", ins, outs, attrs, place, true);

    // EW-Add0
    ins = {{"X", outs["Out"]}, {"Y", {Bs[i]}}};
    outs = {{"Out",
             {std::shared_ptr<imperative::VarBase>(
                 new imperative::VarBase(true, "Out"))}}};

    tracer.TraceOp("elementwise_add", ins, outs, attrs, place, true);
    input0 = outs["Out"][0];
  }

  // ReduceSum
  ins = {{"X", {input0}}};
  outs = {{"Out",
           {std::shared_ptr<imperative::VarBase>(
               new imperative::VarBase(true, "Out"))}}};
  attrs = {{"reduce_all", true}};

  tracer.TraceOp("reduce_sum", ins, outs, attrs, place, true);

  auto* engine = tracer.GetEngine();
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine->Init(outs["Out"], grad_tensors, false /*retain_graph*/);
  engine->Execute();

  if (accuracy_check) {
    std::unordered_map<std::string, float> result =
        egr::compute_mlp_expected_results();

    FluidCheckTensorValue(outs["Out"][0], place, result["Out"]);
    FluidCheckGradTensorValue(X, place, result["GradX"]);
    FluidCheckGradTensorValue(Ws[0], place, result["GradW"]);
  }
}

}  // namespace imperative
}  // namespace paddle