config_parser.py 119.2 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''

import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s',
)
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
print=logger.info

# from layer type name to layer class
g_layer_type_map = {}

# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
117 118
        g_default_momentum = None,
        g_default_decay_rate = None,
Z
zhangjinchao01 已提交
119 120
        g_default_initial_mean = 0.,
        g_default_initial_std = 0.01,
121
        g_default_num_batches_regularization = None,
Z
zhangjinchao01 已提交
122 123
        g_default_initial_strategy = 0,
        g_default_initial_smart = False,
124 125
        g_default_gradient_clipping_threshold = None,
        g_default_device = None,
Z
zhangjinchao01 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        g_default_update_hooks = None,
        g_default_compact_func = None,

        g_config = TrainerConfig(),
        g_layer_map = {},
        g_parameter_map = {},

        g_extended_config_funcs = {},

        # store command args of paddle_trainer
        g_command_config_args = {},

        # Used for PyDataProvider to avoid duplicate module name
        g_py_module_name_list = [],

        g_current_submodel = None,
        g_root_submodel = None,
        g_submodel_map = {},
        g_submodel_stack = [],

        g_add_submodel_suffix = False,
    ):

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

g_config_funcs = {}

# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
    return wrap

def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

def default(x, default_value):
    return default_value if x is None else x

class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

# functions available in config file

# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

219 220 221 222
@config_func
def HasInputsSet():
    return len(g_config.model_config.input_layer_names) != 0

Z
zhangjinchao01 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

    name = MakeLayerNameInParentSubmodel(name) #rename in nested submodel

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

@config_func
def SubModelEnd(name = None):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    config_assert(g_current_submodel is not g_root_submodel, "submodel not begin")
    if name is not None:
        config_assert(g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
                      "submodel name error")

    g_current_submodel = g_submodel_stack.pop()

def MakeLayerNameInParentSubmodel(name):
    suffix = ""
269 270
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    return name + suffix

def GetLayerBaseName(name):
    return name.split('@')[0]

def MakeLayerNameInSubmodel(name, submodel_name = None):
    global g_current_submodel
    global g_add_submodel_suffix
    if (submodel_name is None
        and not g_add_submodel_suffix
        and not g_current_submodel.is_recurrent_layer_group):
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
310 311
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
312 313 314 315 316 317 318
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
319
    g_current_submodel.target_inlinkid = -1
Z
zhangjinchao01 已提交
320
    in_links_count = 0
321
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
322 323 324 325 326 327
        if isinstance(link, basestring):
            name = link
            has_subseq = False
        else:
            name = link.link_name
            has_subseq = link.has_subseq
328 329 330 331
        # assign target_inlinkid according to target_inlinkname
        if target_inlinkname == name:
            g_current_submodel.target_inlinkid = linkid

Z
zhangjinchao01 已提交
332 333 334 335 336 337 338 339 340 341 342 343
        if in_links_count == 0:
            in_links_has_subseq = has_subseq
        else:
            config_assert(in_links_has_subseq == has_subseq,
                          "The sequence type of in_links should be the same in RecurrentLayerGroup")
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
        if has_subseq:
            SequenceScatterAgentLayer(name=name, size=layer.size)
        else:
            ScatterAgentLayer(name=name, size=layer.size)
344

Z
zhangjinchao01 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)
        pair.has_subseq = has_subseq

@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
        has_subseq = False
    else:
        name = link.link_name
        has_subseq = link.has_subseq
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name
    pair.has_subseq = has_subseq


def RecurrentLayerGroupSetGenerator(generator=None):
    generator.eos_layer_name = MakeLayerNameInSubmodel(
        generator.eos_layer_name)
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
376
                             target_inlinkname="",
Z
zhangjinchao01 已提交
377 378 379
                             seq_reversed=False):
    RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
380 381
                                            seq_reversed,
                                            target_inlinkname)
Z
zhangjinchao01 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)


    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
        config_assert(len(in_links) == 0,
                      "no in_links should be passed to generator")
        config_assert(len(out_links) >= 1,
                      "one or more than one out_links should be passed to generator")



@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
    for pair in g_current_submodel.memories: #check exist
        layer = g_layer_map[pair.layer_name]
        config_assert(layer is not None, "memory declare wrong name:%s" % pair.layer_name)
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        elif pair.has_subseq:
            SequenceGatherAgentLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

@config_class
class Bias(Cfg):
    def __init__(
            self,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            gradient_clipping_threshold=None,
            is_static=None,
            is_shared=None,
            ):
        self.add_keys(locals())

# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
468
            bilinear_interp=None,
Z
zhangjinchao01 已提交
469 470 471 472
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
473
            maxout=None,
Z
zhangjinchao01 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
            input_layer_argument=None,
            ):
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

# Define a projection for iexed layer
@config_class
class Projection(Input):
    type = None # subclass should set it correctly
    def __init__(
            self,
            input_layer_name,
            size = 0, # projection output size
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
            input_layer_argument=None,
            ):
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
    def calc_parameter_size(self, input_size, output_size):
        return 0
    def calc_parameter_dims(self, input_size, output_size):
        return []

# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

    def __init__(
            self,
            input_layer_name,
            offset,
            **xargs):
        super(IdentityOffsetProjection, self).__init__(
            input_layer_name, **xargs)
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
    def calc_parameter_dims(self, input_size, output_size):
        return []

# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
    def calc_parameter_size(self, input_size, output_size):
        return output_size
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

@config_class
class ContextProjection(Projection):
    type = 'context'

    def __init__(
            self,
            input_layer_name,
            context_start,
            context_length,
            trainable_padding,
            **xargs):
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
@config_class
class ConvProjection(Projection):
    type = 'conv'

    def __init__(
            self,
            input_layer_name,
            num_filters=None,
            conv_conf=None,
            **xargs):
        super(ConvProjection, self).__init__(input_layer_name, **xargs)

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

        parse_conv(conv_conf,
                   input_layer_name,
653 654
                   self.proj_conf.conv_conf,
                   num_filters)
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        # TODO: support rectangle input
        self.proj_conf.output_size = (self.proj_conf.conv_conf.output_x  ** 2) * num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
        return co * ci * fh * fw

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None


Z
zhangjinchao01 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
    type = None # subclass should set it correctly
    def __init__(
            self,
            input_layer_names,
            ):
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
    def __init__(
            self,
            input_layer_names,
            scale=None,
            **xargs):
        super(DotMulOperator, self).__init__(
            input_layer_names, **xargs)
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]



@config_class
class ConvOperator(Operator):
    type = 'conv'
    def __init__(
            self,
            input_layer_names,
            num_filters=None,
            conv_conf=None,
            **xargs):
        super(ConvOperator, self).__init__(
            input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

733 734
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
735 736
                   self.operator_conf.conv_conf,
                   num_filters)
Z
zhangjinchao01 已提交
737 738 739 740
        self.operator_conf.output_size = (self.operator_conf.conv_conf.output_x  ** 2) * num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

741 742
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771


# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
    def __init__(
            self,
            filter_size,
            channels,
            padding = None,
            stride = None,
            groups = None,
            filter_channels = None,
            output_x = None,
            img_size = None,
            caffe_mode = True,
            filter_size_y = None,
            padding_y = None,
            stride_y = None):
        self.add_keys(locals())
        if filter_size_y is None:
          self.filter_size_y = filter_size
        if padding_y is None:
          self.padding_y = padding
        if stride_y is None:
          self.stride_y = stride
        if output_x is not None:
          config_assert(output_x <= 0)

L
liaogang 已提交
772 773 774 775 776 777 778 779 780 781
# please refer to the comments in proto/ModelConfig.proto
@config_class
class BilinearInterp(Cfg):
    def __init__(
            self,
            out_size_x = None,
            out_size_y = None,
            num_channels = None):
        self.add_keys(locals())

Z
zhangjinchao01 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Pool(Cfg):
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y = None,
            img_width = None,
            start = None,
            stride = None,
            stride_y = None,
            padding = None,
            padding_y = None):
        self.add_keys(locals())

# please refer to the comments in proto/ModelConfig.proto
@config_class
class Norm(Cfg):
    def __init__(
            self,
            norm_type,
            channels,
            size,
            scale,
            pow,
            output_x = None,
            img_size = None,
            blocked = None):
        self.add_keys(locals())

# please refer to the comments in proto/ModelConfig.proto
@config_class
class Image(Cfg):
    def __init__(
            self,
            channels,
            img_size = None):
        self.add_keys(locals())

@config_class
class BlockExpand(Cfg):
    def __init__(
            self,
            channels,
            padding_x = 0,
            padding_y = 0,
            stride_x = 0,
            stride_y = 0,
            block_x = 0,
            block_y = 0,
            img_size_x = 0,
            img_size_y = 0,
            output_x = 0,
            output_y = 0):
        self.add_keys(locals())

840 841 842 843 844 845 846 847 848 849
@config_class
class MaxOut(Cfg):
    def __init__(
            self,
            channels,
            groups,
            img_size_x = 0,
            img_size_y = 0):
        self.add_keys(locals())

Z
zhangjinchao01 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
def DataBase(async_load_data=False,
             constant_slots=None,
             data_ratio=1,
             is_main_data=True,
             usage_ratio=None):
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    data_config.data_ratio=data_ratio
    data_config.is_main_data=is_main_data

    usage_ratio=default(usage_ratio, settings_deprecated["usage_ratio"])
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

@config_func
def SimpleData(
        files=None,
        feat_dim=None,
        context_len=None,
        buffer_capacity=None,
        **xargs):
    data_config = DataBase(**xargs)
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

@config_func
def PyData(
        files=None,
        type=None,
        file_group_queue_capacity=None,
        load_data_module=None,
        load_data_object=None,
        load_data_args="",
        load_file_count=None,
        constant_slots=None,
        load_thread_num=None,
        **xargs):
    data_config = DataBase(**xargs)
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
        module_new_name = "%s_copy_%d" % (load_data_module, len(g_py_module_name_list))
        g_py_module_name_list.append(module_new_name)
        module_path = "%s/%s.py" % (get_path(load_data_module), load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module), module_new_name)
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

@config_func
def ProtoData(
        files=None,
        type=None,
        file_group_queue_capacity=None,
        load_file_count=None,
        constant_slots=None,
        load_thread_num=None,
        **xargs):
    data_config = DataBase(**xargs)
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

#real data for training is actually provided by "sub_data" data providers.
@config_func
def MultiData(
        sub_data=[]
        ):
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

@config_func
def Data(
        type,
        files=None,
        feat_dim=None,
        slot_dims=None,
        context_len=None,
        buffer_capacity=None,
        **xargs):

    data_config = DataBase(**xargs)
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

L
liaogang 已提交
1022 1023 1024 1025 1026
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    bilinear_conf.out_size_x = bilinear.out_size_x;
    bilinear_conf.out_size_y = bilinear.out_size_y;
    bilinear_conf.num_channels = bilinear.num_channels;

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
'''
caffe_mode: compute the output size using floor instead of ceil,
            which is consistent of caffe and CuDNN's convention.
'''
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
'''
calcualte image_size based on output_size for convolution. 
It is the reverse function of cnn_output_size
'''
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
    if caffe_mode:
        img_size = (output_size - 1) * stride + filter_size - 2 * padding
    else:
        img_size = (output_size - 2) * stride + filter_size - 2 * padding + 1 
    return img_size

Z
zhangjinchao01 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
def parse_pool(pool, input_layer_name, pool_conf):
    pool_conf.pool_type = pool.pool_type
    config_assert(pool.pool_type in ['max-projection', 'avg-projection',
                  'cudnn-max-pool', 'cudnn-avg-pool'],
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection', "
                  "'cudnn-max-pool', 'cudnn-avg-pool']"
                  % pool.pool_type)

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride);

    img_pixels = g_layer_map[input_layer_name].size / pool.channels
1066 1067
    # the img_width may be removed,
    # and it can be calculated automatically later.
Z
zhangjinchao01 已提交
1068 1069 1070 1071 1072 1073
    pool_conf.img_size = default(pool.img_width, int(img_pixels ** 0.5))
    pool_conf.img_size_y = img_pixels / pool_conf.img_size
    config_assert(pool_conf.img_size * pool_conf.img_size_y == img_pixels,
                  "Incorrect input image size %d for input image pixels %d"
                  % (pool_conf.img_size, img_pixels))

1074
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1075

1076
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1077 1078
        pool_conf.padding = pool.padding
        pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
1079 1080 1081 1082
        pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                             pool_conf.padding, pool_conf.stride, False)
        pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                             pool_conf.padding_y, pool_conf.stride_y, False)
Z
zhangjinchao01 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
    image_pixels = g_layer_map[input_layer_name].size / image_conf.channels
    image_conf.img_size = int(image_pixels ** 0.5)
    config_assert((image_conf.img_size ** 2) == image_pixels,
                  "Incorrect input image size %d for input image pixels %d"
                  % (image_conf.img_size, image_pixels))

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
    config_assert(norm.norm_type in ['rnorm', 'cmrnorm-projection'],
                  "norm-type %s is not in [rnorm, 'cmrnorm-projection']"
                  % norm.norm_type)
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

    img_pixels = g_layer_map[input_layer_name].size / norm.channels
    norm_conf.img_size = int(img_pixels ** 0.5)
    config_assert((norm_conf.img_size ** 2) == img_pixels,
                  "Incorrect input image size %d for input image pixels %d"
                  % (norm_conf.img_size, img_pixels))
    norm_conf.output_x = norm_conf.img_size
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
        norm_conf.scale /= norm.size ** 2
1113

1114 1115 1116 1117
'''
caffe_mode: compute the output size using floor instead of ceil,
            which is consistent of caffe and CuDNN's convention.
'''
1118
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
1128 1129
    
    if not trans:
1130 1131
        conv_conf.filter_channels = conv.channels / conv.groups

1132 1133 1134 1135 1136 1137 1138 1139
        img_pixels = g_layer_map[input_layer_name].size / conv.channels
        print('channels=%d size=%d'%(conv.channels,
          g_layer_map[input_layer_name].size))
        conv_conf.img_size = int(img_pixels ** 0.5)
        config_assert((conv_conf.img_size ** 2) == img_pixels,
                      ("Input layer %s: Incorrect input image size %d for input "
                       + "image pixels %d")
                      % (input_layer_name, conv_conf.img_size, img_pixels))
1140 1141 1142 1143
                
        conv_conf.output_x = cnn_output_size(
            conv_conf.img_size, conv_conf.filter_size, 
            conv_conf.padding, conv_conf.stride, conv_conf.caffe_mode)
1144
    else:
1145 1146
        conv_conf.filter_channels = num_filters / conv.groups
        
1147 1148 1149 1150 1151 1152 1153 1154
        outputSize = g_layer_map[input_layer_name].size / conv.channels
        print('channels=%d size=%d'%(conv.channels,
          g_layer_map[input_layer_name].size))
        conv_conf.output_x = int(outputSize ** 0.5)
        config_assert((conv_conf.output_x ** 2) == outputSize,
                      ("Input layer %s: Incorrect input image size %d for input "
                       + "image pixels %d")
                      % (input_layer_name, conv_conf.output_x, outputSize))
1155 1156 1157
        conv_conf.img_size = cnn_image_size(
            conv_conf.output_x, conv_conf.filter_size, 
            conv_conf.padding, conv_conf.stride, conv_conf.caffe_mode)
1158

Z
zhangjinchao01 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1172 1173 1174
        block_expand_conf.output_x = cnn_output_size(
            block_expand.img_size_x, block_expand.block_x, 
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1175 1176

    if block_expand_conf.img_size_y == 0:
1177
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1178
    else:
1179 1180 1181
        block_expand_conf.output_y = cnn_output_size(
            block_expand.img_size_y, block_expand.block_y, 
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1182

1183 1184 1185 1186 1187 1188
def parse_maxout(maxout, input_layer_name, maxout_conf):
    maxout_conf.channels = maxout.channels
    maxout_conf.groups = maxout.groups
    maxout_conf.img_size_x = maxout.img_size_x
    maxout_conf.img_size_y = maxout.img_size_y
    
Z
zhangjinchao01 已提交
1189 1190 1191 1192 1193 1194 1195 1196
# Define an evaluator
@config_func
def Evaluator(
        name,
        type,
        inputs,
        chunk_scheme = None,
        num_chunk_types = None,
1197 1198 1199 1200 1201 1202
        classification_threshold = None,
        positive_label = None,
        dict_file = None,
        result_file = None,
        num_results = None,
        delimited = None,
Z
zhangjinchao01 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        ):
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

class LayerBase(object):
    def __init__(
            self,
            name,
            type,
            size, # size can be 0. In this case, subclass should set it.
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
1242
            coeff=None):
Z
zhangjinchao01 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        config_assert('@' not in name,
                "layer name: %s contain special character @" % name)
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1260
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1261 1262 1263
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1264 1265
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1266 1267 1268 1269 1270 1271 1272
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1273
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
            self.config.device = g_default_device

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
                    input_layer_name = input,
                    parameter_name = gen_parameter_name(name, input_index))
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
                self.operators.append(input);
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
                raise ValueError(
                    'Wrong type for inputs: %s' % type_of(input))
            config_assert(input_layer_name in g_layer_map,
                          "Unknown input layer '%s' for layer %s"
                          % (input_layer_name, name))
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)


    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
            bias, # True/False or BiasCfg
            size,
            dims = None,
            for_self = True, # whether create bias for layer self
            ):

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

        config_assert(type_of(bias) == bool or type_of(bias) == Bias,
                      'Incorrect type for bias: %s' % type_of(bias))

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1343 1344
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1345 1346 1347
                Parameter(
                    bias.parameter_name,
                    size,
1348
                    self.config.device if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
                    gradient_clipping_threshold=bias.gradient_clipping_threshold,
                    is_static=bias.is_static,
                    is_shared=bias.is_shared,
                    )
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

    def create_input_parameter(
            self,
            input_index,
            size,
            dims=None,
1374
            sparse = None,
1375
            format = None):
Z
zhangjinchao01 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
            config_assert(size == para.size, ('Shared parameter "%s" does not '
                                              + 'have same size: %s vs. %s')
                          % (input_config.parameter_name, para.size, size))

            config_assert(dims == para.dims, ('Shared parameter "%s" does not '
                                              + 'have same dims: %s vs. %s')
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1402
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
            gradient_clipping_threshold=input_config.gradient_clipping_threshold,
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
            update_hooks=input_config.update_hooks
            )

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            softmax_selfnorm_alpha=0.1,
            **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(name,
            'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

@config_layer('fc')
class FCLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            bias=True,
            **xargs):
        super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"

            if sparse:
                psize = self.inputs[input_index].nnz
1462 1463
            else:
                sparse = None
Z
zhangjinchao01 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

            self.create_input_parameter(input_index, psize, dims, sparse, format)
        self.create_bias_parameter(bias, self.config.size)

@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            bias=True,
            selective_fc_pass_generation=False,
            has_selected_colums=True,
            selective_fc_full_mul_ratio=0.02,
            selective_fc_parallel_plain_mul_thread_num=None,
            **xargs):
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
                ("if indices of selected columns are not specified, "
                "selective_fc Layer has at least two inputs"))
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

            self.create_input_parameter(
                input_index, psize, dims, sparse, format)
        self.create_bias_parameter(bias, self.config.size)

1519 1520 1521 1522 1523 1524 1525 1526
@config_layer('print')
class PrintLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs):
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)

Z
zhangjinchao01 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
@config_layer('data')
class DataLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            device=None):
        super(DataLayer, self).__init__(name, 'data' , size, inputs=[], device=device)

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
@config_layer('data_norm')
class DataNormLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            data_norm_strategy="z-score",
            device=None):
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
    def __init__(
            self,
            name,
            inputs,
            partial_sum = 1,
            **args):
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        config_assert(len(self.inputs) == 1)
        config_assert(self.input_layer.size % partial_sum == 0)
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
    def __init__(
            self,
            name,
            inputs=[],
            bias=True,
            num_filters=None,
            shared_biases=False,
            **xargs):
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
           (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            parse_conv(
                self.inputs[input_index].conv,
                input_layer.name,
1640 1641
                self.config.inputs[input_index].conv_conf,
                num_filters)
Z
zhangjinchao01 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            print("output size for %s is %d " % (name, conv_conf.output_x))
            self.create_input_parameter(input_index, psize)
            self.set_layer_size(
                (conv_conf.output_x ** 2) * self.config.num_filters)

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
    def __init__(
            self,
            name,
            inputs=[],
            bias=True,
            num_filters=None,
            shared_biases=False,
            **xargs):
1678
        super(ConvTransLayerBase, self).__init__(
1679 1680 1681 1682 1683 1684 1685 1686
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1687 1688
        # cudnn_convt has not been implemented so use exconvt only
        self.layer_type = "exconvt"
1689 1690 1691 1692 1693 1694 1695 1696
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1697
            parse_conv(
1698 1699
                self.inputs[input_index].conv,
                input_layer.name,
1700
                self.config.inputs[input_index].conv_conf,
1701
                num_filters,
1702
                trans=True)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            print("output size for %s is %d " % (name, conv_conf.output_x))
            self.create_input_parameter(input_index, psize)
            self.set_layer_size(
                (conv_conf.img_size ** 2) * self.config.num_filters)

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1716
        return conv_conf.channels * conv_conf.filter_channels \
1717 1718 1719 1720 1721 1722
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Z
zhangjinchao01 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
@config_layer('norm')
class NormLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, device=device)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            parse_norm(
                self.inputs[input_index].norm,
                input_layer.name,
                self.config.inputs[input_index].norm_conf)
            norm_conf = self.config.inputs[input_index].norm_conf
            self.set_layer_size((norm_conf.output_x ** 2) * norm_conf.channels)

@config_layer('pool')
class PoolLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, device=device)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            parse_pool(
                self.inputs[input_index].pool,
                input_layer.name,
                self.config.inputs[input_index].pool_conf)
            pool_conf = self.config.inputs[input_index].pool_conf
            print("output size for %s is %d*%d " % (
                name, pool_conf.output_y, pool_conf.output_x))
1757
            self.set_layer_size((pool_conf.output_x * pool_conf.output_y) * pool_conf.channels)
Z
zhangjinchao01 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
    def __init__(
            self,
            name,
            inputs,
            active_type="linear",
            bias=True,
            device=None,
            use_global_stats=True,
            moving_average_fraction=0.9,
            batch_norm_type=None,
            **xargs):
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
        config_assert(len(inputs) == 1,
                      "BatchNormLayer must have one and only one input")
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
            inputs.append(Input(inputs[0].input_layer_name,
                                initial_std=0.0,
                                initial_mean=0.0,
                                is_static=True,
                                 is_shared=is_shared,
                                ))

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
            ((not parallel_nn) or self.config.device > -1) and \
1800
            cudnn_version >= 4007
Z
zhangjinchao01 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
        super(BatchNormLayer, self).__init__(name, self.layer_type, 0,
                                             active_type=active_type,
                                             inputs=inputs, device=device, **xargs)

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

        input_layer= self.get_input_layer(0)
        parse_image(self.inputs[0].image,
                    input_layer.name,
                    self.config.inputs[0].image_conf)
        image_conf = self.config.inputs[0].image_conf
        self.set_layer_size((image_conf.img_size ** 2) * image_conf.channels)

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

@config_layer('trans')
class TransLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(TransLayer, self).__init__(name, 'trans', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1,
                      'TransLayer must have one and only one input')
        self.set_layer_size(self.get_input_layer(0).size)

@config_layer('resize')
class ResizeLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            device=None):
        super(ResizeLayer, self).__init__(name, 'resize', size=size, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1,
                      'ResizeLayer must have one and only one input')

@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(BlockExpandLayer, self).__init__(name, 'blockexpand', 0, inputs=inputs, device=device)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            parse_block_expand(self.inputs[input_index].block_expand,
                input_layer.name,
                self.config.inputs[input_index].block_expand_conf)
            block_expand_conf = self.config.inputs[input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x * block_expand_conf.block_y
                * block_expand_conf.channels)

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
@config_layer('maxout')
class MaxOutLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            **xargs):
        super(MaxOutLayer, self).__init__(name, 'maxout', 0, inputs=inputs, **xargs)
        input_layer = self.get_input_layer(0)
        parse_maxout(self.inputs[0].maxout,
                     input_layer.name,
                     self.config.inputs[0].maxout_conf)
        maxout_conf = self.config.inputs[0].maxout_conf
        self.set_layer_size(g_layer_map[input_layer.name].size / maxout_conf.groups)
            
Z
zhangjinchao01 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
# key: cost type
# value: cost class
g_cost_map = {}

# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
        super(type(cls), cls).__init__(name, cost_type, 1, inputs, device=device, coeff=coeff)

    cls = type(class_name, (LayerBase,), dict(__init__=init))
    global g_cost_map
    g_cost_map[cost_type] = cls

define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
1906
define_cost('SumCost', 'sum_cost')
Z
zhangjinchao01 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
    def __init__(
            self,
            name,
            num_classes,
            inputs,
            device=None,
            bias=True):
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) >= 2,
                      'HierarchicalSigmoidLayer must have at least 2 inputs')
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            NDCG_num = 5,
            max_sort_size = -1,
            device=None):
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2,
                      'lambdaCost must have 2 inputs')
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
          config_assert(NDCG_num <= max_sort_size,
                        'NDCG_num must be less than or equal to max_sort_size')
        self.config.max_sort_size = max_sort_size

@config_layer('nce')
class NCELayer(LayerBase):
    def __init__(
            self,
            name,
            num_classes,
            inputs,
            num_neg_samples=10,
            neg_sampling_dist=None,
            bias=True,
            **xargs):
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
        config_assert(len(self.inputs) >= 2,
                      'NCELayer must have at least 2 inputs')
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
            config_assert(len(neg_sampling_dist) == num_classes,
                          'len(neg_sampling_dist)(%s) is not same as num_classes (%s)'
                          % (len(neg_sampling_dist), num_classes))
            s = sum(neg_sampling_dist)
            config_assert(abs(s - 1) < 1e-5,
                          'The sum of neg_sampling_dist (%s) is not 1' % s)

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
        input_layer =  self.get_input_layer(num_real_inputs)
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

        if (num_real_inputs > 1 and input_layer.size == 1
            and self.get_input_layer(num_real_inputs - 1).type == 'data'):
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            bias=True,
            **xargs):
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
        config_assert(len(inputs) > 0,
                      'inputs cannot be empty for AddToLayer')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

@config_layer('agent')
class AgentLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            device=None):
        super(AgentLayer, self).__init__(name, 'agent', size, inputs=[], device=device)

@config_layer('sequence_agent')
class SequenceAgentLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            device=None):
        super(SequenceAgentLayer, self).__init__(
            name, 'sequence_agent', size, inputs=[], device=device)

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            device=None):
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            device=None):
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

@config_layer('sequence_gather_agent')
class SequenceGatherAgentLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            device=None):
        super(SequenceGatherAgentLayer, self).__init__(
                name, 'sequence_gather_agent', size, inputs=[], device=device)

@config_layer('sequence_scatter_agent')
class SequenceScatterAgentLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            device=None):
        super(SequenceScatterAgentLayer, self).__init__(
                name, 'sequence_scatter_agent', size, inputs=[], device=device)

@config_layer('multiplex')
class MultiplexLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            size,
            device=None):
        super(MultiplexLayer, self).__init__(name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(len(inputs) > 2,
          'MultiplexLayer should have more than 2 inputs.')
        for i in range(1, len(inputs)):
            config_assert(self.get_input_layer(i).size == size,
                          "All the input layers except the first one should"
                          "have the same size as the MultiplexLayer.")

@config_func
def Link(name,
        has_subseq=False,
        ):
    link_config = LinkConfig()
    link_config.link_name = name
    link_config.has_subseq = has_subseq
    return link_config

# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
# will return name of the memory,
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           ):
    agent_name = name + "+delay1"
    if is_sequence:
        agent_layer = SequenceAgentLayer(agent_name, size)
    else:
        agent_layer = AgentLayer(agent_name, size)
    config_assert(g_current_submodel.is_recurrent_layer_group,
                      'Memory should be used in recurrent layer group only')
    memory = g_current_submodel.memories.add()
    memory.layer_name = MakeLayerNameInSubmodel(name)
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
    memory.is_sequence = is_sequence
    options = sum((boot_layer is not None,
                   bool(boot_bias),
                   boot_with_const_id is not None))
    config_assert(options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id')
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
                      'boot_layer "%s" does not correspond to a layer name' % boot_layer)
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
            boot_bias, size, for_self = False)
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
        eos_layer_name = "eos_check",
        num_results_per_sample = 1,
        beam_size = 1,
        log_prob = None,
        ):
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

@config_layer('expand')
class ExpandLayer(LayerBase):
   def __init__(
            self,
            name,
            inputs,
            trans_type='non-seq',
            device=None,
            bias=False):
       super(ExpandLayer, self).__init__(
           name, 'expand', 0, inputs=inputs, device=device)
       config_assert(len(self.inputs) == 2,
                     'ExpandLayer takes 2 and only 2 inputs')
       self.config.trans_type =  trans_type
       for input_index in xrange(len(self.inputs)):
           input_layer = self.get_input_layer(input_index)
       self.set_layer_size(self.get_input_layer(0).size)
       self.create_bias_parameter(bias, self.config.size)

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
   def __init__(
            self,
            name,
            inputs,
            device=None,
            num_filters=None,
            bias=False):
       super(FeatMapExpandLayer, self).__init__(
           name, 'featmap_expand', 0, inputs=inputs, device=device)
       config_assert(len(self.inputs) == 1,
                     'ExpandLayer takes 1 and only 1 inputs')
       if num_filters is not None:
            self.config.num_filters = num_filters
       else:
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
       self.set_layer_size(self.get_input_layer(0).size * num_filters)


@config_layer('max')
class MaxLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            trans_type='non-seq',
            active_type='linear',
            device=None,
            bias=False,
2243
            output_max_index=None):
Z
zhangjinchao01 已提交
2244 2245 2246 2247 2248 2249 2250 2251
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
        self.config.trans_type =  trans_type
        self.config.active_type =  active_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2252 2253
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465


@config_layer('maxid')
class MaxIdLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            beam_size=None,
            device=None):
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            eos_id,
            device=None):
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
        self.set_layer_size(2) # boolean output
        self.config.eos_id = eos_id

@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            active_type='linear',
            trans_type='non-seq',
            device=None,
            bias=False):
        super(SequenceLastInstanceLayer, self).__init__(name, 'seqlastins',
          0, inputs=inputs, device=device, active_type=active_type)
        config_assert(len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
        self.config.trans_type =  trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
    def __init__(
            self,
            name,
            inputs,
            active_type='linear',
            trans_type='non-seq',
            device=None,
            bias=False,
            ):
        super(SequenceFirstInstanceLayer, self).__init__(name,
          inputs=inputs, active_type=active_type, device=device, bias=bias)
        self.config.trans_type =  trans_type
        self.config.select_first = True

@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            active_type='linear',
            device=None,
            bias=False):
        super(SequenceConcatLayer, self).__init__(name, 'seqconcat',
          0, inputs=inputs, device=device, active_type=active_type)
        config_assert(len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            active_type='linear',
            device=None,
            bias=False):
        super(SequenceReshapeLayer, self).__init__(name, 'seqreshape',
          size, inputs=inputs, device=device, active_type=active_type)
        config_assert(len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

@config_layer('subseq')
class SubSequenceLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            active_type='linear',
            device=None,
            bias=False):
        super(SubSequenceLayer, self).__init__(name, 'subseq',
          0, inputs=inputs, device=device, active_type=active_type)
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

@config_layer('out_prod')
class OuterProdLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(OuterProdLayer, self).__init__(name, 'out_prod',
          0, inputs=inputs, device=device)
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

@config_layer('power')
class PowerLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(PowerLayer, self).__init__(name, 'power',
          0, inputs=inputs, device=device)
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
        config_assert(1==input_layer0.size,
          'The left input is the exponent and should be of size 1')

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            slope=1.0,
            intercept=0.0,
            device=None):
        super(SlopeInterceptLayer, self).__init__(name, 'slope_intercept',
          0, inputs=inputs, device=device)
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

@config_layer('scaling')
class ScalingLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(ScalingLayer, self).__init__(name, 'scaling',
          0, inputs=inputs, device=device)
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
        config_assert(1==input_layer0.size,
          'The left input should be of size 1')

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(ConvShiftLayer, self).__init__(name, 'conv_shift',
          0, inputs=inputs, device=device)
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            device=None):
        super(ConvexCombinationLayer, self).__init__(
           name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2,
          'ConvexCombinationLayer must have 2 inputs')
2466 2467 2468
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
        self.set_layer_size(size)

@config_layer('interpolation')
class InterpolationLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 3,
            'InterpolationLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

L
liaogang 已提交
2490 2491 2492 2493 2494 2495
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
L
liaogang 已提交
2496
            **xargs):
L
liaogang 已提交
2497
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2498
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
2499 2500 2501 2502
        input_layer = self.get_input_layer(0)
        parse_bilinear(self.inputs[0].bilinear_interp,
                       input_layer.name,
                       self.config.inputs[0].bilinear_interp_conf);
L
liaogang 已提交
2503 2504 2505
        conf = self.inputs[0].bilinear_interp
        self.set_layer_size(conf.out_size_x * conf.out_size_y *  conf.num_channels)

Z
zhangjinchao01 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(SumToOneNormLayer, self).__init__(
           name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1,
          'SumToOneNormLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            cos_scale=1.0,
            device=None):
        super(CosSimVecMatLayer, self).__init__(
          name, 'cos_vm', size, inputs=inputs, device=device)
        self.config.cos_scale = cos_scale
        config_assert(len(self.inputs) == 2,
          'CosSimVecMatLayer must have 2 inputs')
2534 2535 2536
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            device=None):
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            average_strategy='average',
            trans_type='non-seq',
            active_type='linear',
            device=None,
            bias=False):
        super(AverageLayer, self).__init__(name, 'average', 0, inputs=inputs,
            device=device, active_type=active_type)
        self.config.average_strategy = average_strategy
        self.config.trans_type =  trans_type
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

@config_layer('cos')
class CosSimLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
2585
            cos_scale=5,
Z
zhangjinchao01 已提交
2586 2587 2588 2589 2590 2591 2592
            device=None):
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2593
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625


@config_layer('tensor')
class TensorLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            device=None,
            bias=True,
            **xargs):
        super(TensorLayer, self).__init__(name, 'tensor', size, inputs=inputs, device=device, **xargs)
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
        config_assert(inputs[1].parameter_name == None, 'second parameter should be None.')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            size=0,
            bias=True,
2626
            error_clipping_threshold=None,
Z
zhangjinchao01 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
            **xargs):
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2645
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2646 2647 2648
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2649
            else:
2650 2651 2652
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
                    config_assert(sz == self.config.size,
2653
                                  "different inputs have different size: %s vs. %s" %
2654
                                  (sz, self.config.size))
Z
zhangjinchao01 已提交
2655 2656 2657 2658 2659
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
                config_assert(isinstance(input, Projection), "input should be projection or operation")
2660
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
2661 2662 2663
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2664 2665 2666 2667 2668 2669
            elif isinstance(input, Projection):
            	sz = input.calc_output_size(input_layer)
            	if sz != 0:
            		config_assert(sz == self.config.size,
            		"different inputs have different size: %s vs. %s" %
            		(sz, self.config.size))
Z
zhangjinchao01 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
                input_config.proj_conf.name = gen_parameter_name(name, input_index)
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

2693 2694 2695 2696 2697 2698
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
2699

2700 2701 2702
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
2703

2704 2705
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

# like MixedLayer, but no bias parameter
@config_func
def ExpressionLayer(name,
            inputs,
            **xargs):
    MixedLayer(name, inputs, bias=False, **xargs)

@config_layer('concat')
class ConcatenateLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
2720
            bias=False,
Z
zhangjinchao01 已提交
2721 2722
            **xargs):
        config_assert(inputs, 'inputs cannot be empty')
2723
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if self.config.size ==  0:
                size += input_layer.size

        self.set_layer_size(size)

# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
    def __init__(
            self,
            name,
            inputs,
2742
            bias=False,
Z
zhangjinchao01 已提交
2743 2744 2745 2746
            **xargs):
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
2747 2748 2749 2750 2751 2752 2753 2754

        if isinstance(self.inputs[0], ConvProjection):
          for input_index in xrange(len(self.inputs) - 1):
              input = self.inputs[input_index + 1]
              config_assert(isinstance(input, ConvProjection),
                  "The first input of ConcatenateLayer2 is ConvProjection, "
                  "the other inputs should also be ConvProjection.")

Z
zhangjinchao01 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
              input.proj_conf.output_size)
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
              input.proj_conf.output_size)
            self.create_input_parameter(input_index, psize, dims)

2780 2781 2782 2783 2784 2785 2786
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

2787 2788 2789
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
2790

Z
zhangjinchao01 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            reversed=False,
            bias=True,
            **xargs):
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

@config_layer('lstmemory')
class LstmLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            reversed=False,
            active_gate_type="sigmoid",
            active_state_type="sigmoid",
            bias=True,
            **xargs):
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
        self.config.active_gate_type  = active_gate_type
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            active_gate_type="sigmoid",
            active_state_type="sigmoid",
            bias=True,
            **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step',
          size, inputs, **xargs)
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        config_assert(input_layer0.size == 4 * size, 'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size, 'input_layer1.size != layer.size')
        self.config.active_gate_type  = active_gate_type
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output' , size, inputs)
        config_assert(len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            directions=True,
            active_gate_type="sigmoid",
            active_state_type="sigmoid",
            bias=True,
            **xargs):
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
        config_assert(input_layer.size % (3+dim_num) == 0, "size % (dim_num) should be 0!")
        size = input_layer.size / (3+dim_num)
        self.set_layer_size(size)
        self.config.active_gate_type  = active_gate_type
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
        self.create_input_parameter(0, size * size * (3+dim_num), [size, size, 3+dim_num])
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
        self.create_bias_parameter(bias, size * (5+2*dim_num))

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
    def __init__(
            self,
            name,
            inputs,
            reversed=False,
            active_gate_type="sigmoid",
            bias=True,
            **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
        self.config.active_gate_type  = active_gate_type
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

@config_layer('gru_step')
class GruStepLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            active_gate_type="sigmoid",
            bias=True,
            **xargs):
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs, **xargs)
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        config_assert(input_layer0.size == 3 * size, 'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size, 'input_layer1.size != layer.size')
        self.config.active_gate_type  = active_gate_type
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
@config_layer('crf')
class CRFLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            coeff=1.0,
            device=None):
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
        config_assert(2 <= len(self.inputs) <= 3, 'CRFLayer must have 2 or 3 inputs')
        self.create_input_parameter(0, size * (size + 2), [size, size + 2])
        self.config.coeff = coeff

'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            device=None):
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
        self.create_input_parameter(0, size * (size + 2), [size, size + 2])

@config_layer('ctc')
class CTCLayer(LayerBase):
    def __init__(
            self,
            name,
            size,
            inputs,
            norm_by_times = False,
            device=None):
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
    def __init__(
            self,
            name,
            device=None):
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
def Layer(
        name,
        type,
        **xargs):
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
    config_assert(layer_func,
                  "layer type '%s' not supported." % type)
X
xuwei06 已提交
3019
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067

@config_func
def ParameterHook(
    type,
    **kwargs):
    if type == 'pruning':
        mask_filename = kwargs.get('mask_filename', None)
        assert mask_filename is not None
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        hook.purning_mask_filename = mask_filename
        return hook
    else:
        return None


@config_func
def Parameter(
        name,
        size,
        device,
        dims,
        learning_rate=None,
        momentum=None,
        decay_rate=None,
        decay_rate_l1=None,
        initial_mean=None,
        initial_std=None,
        initial_strategy=None,
        initial_smart=None,
        num_batches_regularization=None,
        sparse_remote_update=None,
        sparse_update=None,
        gradient_clipping_threshold=None,
        sparse=None,
        format=None,
        need_compact=None,
        is_static=None,
        is_shared=None,
        update_hooks=None
        ):

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3079 3080
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3081 3082 3083 3084 3085

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3086 3087 3088 3089
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3090 3091

    num_batches_regularization = default(
Z
zhangjinchao01 已提交
3092
        num_batches_regularization, g_default_num_batches_regularization)
3093 3094 3095
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3096 3097 3098 3099 3100 3101
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
3102 3103 3104 3105
    gradient_clipping_threshold = default(
        gradient_clipping_threshold, g_default_gradient_clipping_threshold)
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Z
zhangjinchao01 已提交
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
    para.initial_strategy = default(initial_strategy, g_default_initial_strategy)
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
            print("Use initial_smart, but dims not set. Initial_smart may not be used in this layer")
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3118 3119 3120 3121 3122 3123 3124

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3125 3126 3127 3128
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3129 3130
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
            update_hooks = update_hooks(para.name)

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
            para.update_hooks.extend(update_hooks)

    g_parameter_map[name] = para


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
        execfile(config_file, make_config_environment(config_file, config_args), local_args)
    return Import

settings = dict(
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
    adam_beta1 = 0.9,
    adam_beta2 = 0.999,
    adam_epsilon = 1e-8,
)

settings_deprecated = dict(
    usage_ratio=1.,
)

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
    start_pass=0,
)

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
            logger.warning("Deprecated: define usage_ratio in DataConfig instead")
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

@config_func
def cluster_config(**args):
    pass

@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
        get_config_arg=make_get_config_arg(config_args),
    )

    funcs.update(g_extended_config_funcs)

    return funcs

def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

def my_fatal(s):
    logger.critical(s)
    raise Exception()

def parse_config(config_file, config_arg_str):
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
    init_config_environment()

    config_args = {}

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

    g_config.model_config.type = 'nn'

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel

    execfile(config_file, make_config_environment(config_file, config_args))
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v);

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


def parse_config_and_serialize(config_file, config_arg_str):
    try:
        config = parse_config(config_file, config_arg_str)
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise