test_conv3d_op.py 31.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
L
liym27 已提交
22
import paddle.fluid as fluid
C
chengduoZH 已提交
23 24


L
liym27 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def conv3d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format="NCDHW"):

    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCDHW' or 'NDHWC'." %
                         str(data_format))

    channel_last = (data_format == "NDHWC")
    if channel_last:
        input = np.transpose(input, [0, 4, 1, 2, 3])

46
    in_n, in_c, in_d, in_h, in_w = input.shape
L
liym27 已提交
47 48 49 50

    f_n, f_c, f_d, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
51 52
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
53
    sub_out_c = out_c // group
L
liym27 已提交
54
    sub_f_n = f_n // group
55

C
chengduoZH 已提交
56 57 58
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilations']

L
liym27 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:5]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1, 1]
78
        input_data_shape = input.shape[2:5]
L
liym27 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_d_0, pad_d_1 = pad[0], pad[0]
    pad_h_0, pad_h_1 = pad[1], pad[1]
    pad_w_0, pad_w_1 = pad[2], pad[2]
    if len(pad) == 6:
        pad_d_0, pad_d_1 = pad[0], pad[1]
        pad_h_0, pad_h_1 = pad[2], pad[3]
        pad_w_0, pad_w_1 = pad[4], pad[5]

    out_d = 1 + (in_d + pad_d_0 + pad_d_1 - (dilation[0] *
                                             (f_d - 1) + 1)) // stride[0]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[1] *
                                             (f_h - 1) + 1)) // stride[1]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[2] *
                                             (f_w - 1) + 1)) // stride[2]
C
chengduoZH 已提交
95

96 97
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

C
chengduoZH 已提交
98 99 100 101
    d_bolck_d = (dilation[0] * (f_d - 1) + 1)
    d_bolck_h = (dilation[1] * (f_h - 1) + 1)
    d_bolck_w = (dilation[2] * (f_w - 1) + 1)

L
liym27 已提交
102 103
    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_d_0, pad_d_1),
                               (pad_h_0, pad_h_1), (pad_w_0, pad_w_1)),
104 105
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
106

L
liym27 已提交
107
    filter_dilation = np.zeros((f_n, f_c, d_bolck_d, d_bolck_h, d_bolck_w))
C
chengduoZH 已提交
108 109 110
    filter_dilation[:, :, 0:d_bolck_d:dilation[0], 0:d_bolck_h:dilation[1], 0:
                    d_bolck_w:dilation[2]] = filter

111 112 113 114 115 116
    for d in range(out_d):
        for i in range(out_h):
            for j in range(out_w):
                for g in range(group):
                    input_pad_masked = \
                        input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
117 118 119 120
                        d * stride[0]:d * stride[0] + d_bolck_d,
                        i * stride[1]:i * stride[1] + d_bolck_h,
                        j * stride[2]:j * stride[2] + d_bolck_w]

L
liym27 已提交
121 122
                    f_sub = filter_dilation[g * sub_f_n:(g + 1) *
                                            sub_f_n, :, :, :, :]
123 124 125
                    for k in range(sub_out_c):
                        out[:, g * sub_out_c + k, d, i, j] = \
                            np.sum(input_pad_masked * f_sub[k, :, :, :, :],
C
chengduoZH 已提交
126
                                   axis=(1, 2, 3, 4))
L
liym27 已提交
127 128
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 4, 1])
129 130 131
    return out


L
liym27 已提交
132 133 134 135 136 137
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
138 139
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
174 175
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
192 193
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NDHWC"

        def init_test_case_2(self):
            N, C, D, H, W = self.input_size
            self.input_size = [N, D, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
219 220
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
L
liym27 已提交
221 222 223
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
224 225
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238

        def init_data_format(self):
            self.data_format = "NDHWC"

        def init_test_case_2(self):
            N, C, D, H, W = self.input_size
            self.input_size = [N, D, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


C
cnn 已提交
239
class TestConv3DOp(OpTest):
C
chengduoZH 已提交
240
    def setUp(self):
K
Kexin Zhao 已提交
241
        self.op_type = "conv3d"
242
        self.use_cudnn = False
243 244
        self.use_mkldnn = False
        self.data_format = "AnyLayout"
245
        self.dtype = np.float64
K
Kexin Zhao 已提交
246
        self.init_kernel_type()
247
        self.init_group()
C
chengduoZH 已提交
248
        self.init_dilation()
249 250
        self.init_test_case()

C
chengduoZH 已提交
251 252 253
        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
254
            'dilations': self.dilations
C
chengduoZH 已提交
255
        }
K
Kexin Zhao 已提交
256 257 258

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
L
liym27 已提交
259 260 261 262 263
        output = conv3d_forward_naive(
            input,
            filter,
            self.groups,
            conv3d_param, ).astype(self.dtype)
C
chengduoZH 已提交
264

K
Kexin Zhao 已提交
265 266 267 268
        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
C
chengduoZH 已提交
269
        self.attrs = {
270 271
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
272
            'groups': self.groups,
K
Kexin Zhao 已提交
273
            'dilations': self.dilations,
274 275 276
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format
C
chengduoZH 已提交
277 278 279
        }
        self.outputs = {'Output': output}

280
    def has_cudnn(self):
281 282
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
283
    def test_check_output(self):
284
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
285
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
286 287
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
288 289

    def test_check_grad(self):
K
Kexin Zhao 已提交
290 291
        if self.dtype == np.float16:
            return
292
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
293
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
294
        self.check_grad_with_place(
295 296 297 298
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.03,
            check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
299

C
chengduoZH 已提交
300
    def test_check_grad_no_filter(self):
K
Kexin Zhao 已提交
301 302
        if self.dtype == np.float16:
            return
303
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
304
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
305 306 307 308
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.03,
309 310
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
311 312

    def test_check_grad_no_input(self):
K
Kexin Zhao 已提交
313 314
        if self.dtype == np.float16:
            return
315
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
316
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
317
        self.check_grad_with_place(
318
            place, ['Filter'],
319 320
            'Output',
            max_relative_error=0.03,
321 322
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
323

324 325 326
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
327
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
328
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
329
        f_c = self.input_size[1] // self.groups
330 331
        self.filter_size = [6, f_c, 3, 3, 3]

L
liym27 已提交
332 333 334
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
335 336 337
    def init_dilation(self):
        self.dilations = [1, 1, 1]

338
    def init_group(self):
C
chengduoZH 已提交
339 340
        self.groups = 1

K
Kexin Zhao 已提交
341 342
    def init_kernel_type(self):
        pass
343

C
chengduoZH 已提交
344

C
cnn 已提交
345
class TestCase1(TestConv3DOp):
C
chengduoZH 已提交
346 347 348
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
349
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
C
chengduoZH 已提交
350
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
351
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
352 353 354
        self.filter_size = [6, f_c, 3, 3, 3]


C
cnn 已提交
355
class TestWithGroup1(TestConv3DOp):
C
chengduoZH 已提交
356 357
    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
358 359


C
chengduoZH 已提交
360
class TestWithGroup2(TestCase1):
361
    def init_group(self):
C
chengduoZH 已提交
362 363
        self.groups = 3

364

C
cnn 已提交
365
class TestWith1x1(TestConv3DOp):
C
chengduoZH 已提交
366 367 368
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
369
        self.input_size = [2, 3, 4, 4, 4]
C
chengduoZH 已提交
370
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
371
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
372
        self.filter_size = [120, f_c, 1, 1, 1]
C
chengduoZH 已提交
373 374 375

    def init_dilation(self):
        self.dilations = [1, 1, 1]
C
chengduoZH 已提交
376

C
chengduoZH 已提交
377 378 379
    def init_group(self):
        self.groups = 3

C
chengduoZH 已提交
380

C
cnn 已提交
381
class TestWithInput1x1Filter1x1(TestConv3DOp):
382 383 384
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
Z
zhupengyang 已提交
385
        self.input_size = [40, 3, 1, 1, 1]
386
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
387
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
388
        self.filter_size = [120, f_c, 1, 1, 1]
389 390 391 392 393 394 395 396

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3


C
cnn 已提交
397
class TestWithDilation(TestConv3DOp):
C
chengduoZH 已提交
398 399 400
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
401
        self.input_size = [2, 3, 6, 6, 6]
C
chengduoZH 已提交
402
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
403
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
404
        self.filter_size = [24, f_c, 2, 2, 2]
C
chengduoZH 已提交
405 406 407 408 409 410

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
411

C
chengduoZH 已提交
412

C
cnn 已提交
413
#---------------- Conv3DCUDNN ----------------
L
liym27 已提交
414 415


416 417
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
cnn 已提交
418
class TestCUDNN(TestConv3DOp):
K
Kexin Zhao 已提交
419
    def init_kernel_type(self):
420
        self.use_cudnn = True
421
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
422 423


424 425
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
cnn 已提交
426
class TestFP16CUDNN(TestConv3DOp):
K
Kexin Zhao 已提交
427 428 429 430 431 432 433 434 435
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
436 437


438 439
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
440
class TestWithGroup1CUDNN(TestWithGroup1):
K
Kexin Zhao 已提交
441
    def init_kernel_type(self):
442
        self.use_cudnn = True
443
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
444 445


446 447
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
448 449 450 451 452 453 454 455 456 457
class TestFP16WithGroup1CUDNN(TestWithGroup1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
458 459


460 461
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
462
class TestWithGroup2CUDNN(TestWithGroup2):
K
Kexin Zhao 已提交
463
    def init_kernel_type(self):
464
        self.use_cudnn = True
465
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
466 467


468 469
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
470 471 472 473 474 475 476 477 478 479
class TestFP16WithGroup2CUDNN(TestWithGroup2):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
480 481


482 483
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
484
class TestWith1x1CUDNN(TestWith1x1):
K
Kexin Zhao 已提交
485
    def init_kernel_type(self):
486
        self.use_cudnn = True
487
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
488 489


490 491
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
492 493 494 495 496 497 498 499 500 501
class TestFP16With1x1CUDNN(TestWith1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
502 503


504 505
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
506
class TestWithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
K
Kexin Zhao 已提交
507
    def init_kernel_type(self):
508
        self.use_cudnn = True
509
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
510 511


512 513
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
514 515 516 517 518 519 520 521 522 523
class TestFP16WithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
524 525


526 527 528 529
class TestCUDNNExhaustiveSearch(TestCUDNN):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True
530
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
531 532


L
liym27 已提交
533 534 535
# ---- test asymmetric padding ----


C
cnn 已提交
536
class TestConv3DOp_2(OpTest):
L
liym27 已提交
537 538 539 540 541
    def setUp(self):
        self.op_type = "conv3d"
        self.use_cudnn = False
        self.use_mkldnn = False
        self.data_format = "NCDHW"
542
        self.dtype = np.float64
L
liym27 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()

        self.init_test_case_2()

        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilations': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
        output = conv3d_forward_naive(input, filter, self.groups, conv3d_param,
                                      self.padding_algorithm,
                                      self.data_format).astype(self.dtype)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format
        }
        self.outputs = {'Output': output}

    def has_cudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

    def test_check_output(self):
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_output_with_place(place, atol=1e-5)

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_grad_with_place(
            place, {'Input', 'Filter'}, 'Output', max_relative_error=0.03)

    def test_check_grad_no_filter(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Filter']))

    def test_check_grad_no_input(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_grad_with_place(
609
            place, ['Filter'],
L
liym27 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Input']))

    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_test_case_2(self):
        pass

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCDHW"


C
cnn 已提交
641
class TestConv3DOp_AsyPadding(TestConv3DOp_2):
642 643 644 645 646 647 648
    def init_test_case(self):
        self.stride = [1, 1, 2]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

L
liym27 已提交
649 650 651 652 653
    def init_paddings(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
654
class TestConv3DOp_DiffDataInDiffDim(TestConv3DOp_2):
655 656 657 658 659 660 661 662 663 664 665 666
    def init_test_case(self):
        self.stride = [1, 1, 2]
        self.input_size = [2, 3, 4, 5, 5]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 4, 3]

    def init_paddings(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
667 668 669
create_test_padding_SAME_class(TestConv3DOp_DiffDataInDiffDim)
create_test_padding_VALID_class(TestConv3DOp_DiffDataInDiffDim)
create_test_channel_last_class(TestConv3DOp_DiffDataInDiffDim)
670 671


C
cnn 已提交
672
class TestCase1_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
673 674 675 676 677 678 679 680 681 682 683 684
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
685
class TestWithGroup1_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
686 687 688 689 690 691 692 693
    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [1, 1, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
694
class TestWithGroup2_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [1, 1, 0, 1, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
710
class TestWith1x1_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
711 712 713 714 715
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
716
        self.filter_size = [120, f_c, 1, 1, 1]
L
liym27 已提交
717 718 719 720 721 722 723 724 725 726 727 728

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
729
class TestWithDilation_AsyPadding(TestConv3DOp_2):
L
liym27 已提交
730 731 732 733 734
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 6, 6, 6]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
735
        self.filter_size = [24, f_c, 2, 2, 2]
L
liym27 已提交
736 737 738 739 740 741 742 743 744 745 746 747

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
748
create_test_cudnn_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
749 750 751 752 753
create_test_cudnn_class(TestWithGroup1_AsyPadding)
create_test_cudnn_class(TestWithGroup2_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithDilation_AsyPadding)

C
cnn 已提交
754
create_test_padding_SAME_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
755 756 757
create_test_padding_SAME_class(TestWithGroup1_AsyPadding)
create_test_padding_SAME_class(TestWith1x1_AsyPadding)

C
cnn 已提交
758
create_test_padding_VALID_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
759 760 761
create_test_padding_VALID_class(TestWithGroup1_AsyPadding)
create_test_padding_VALID_class(TestWith1x1_AsyPadding)

C
cnn 已提交
762
create_test_cudnn_padding_SAME_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
763 764 765
create_test_cudnn_padding_SAME_class(TestWithGroup1_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWith1x1_AsyPadding)

C
cnn 已提交
766
create_test_cudnn_padding_VALID_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
767 768 769
create_test_cudnn_padding_VALID_class(TestWithGroup1_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWith1x1_AsyPadding)

C
cnn 已提交
770
create_test_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
771 772 773
create_test_channel_last_class(TestWithGroup1_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)

C
cnn 已提交
774
create_test_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
775 776 777
create_test_channel_last_class(TestWithGroup1_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)

C
cnn 已提交
778
create_test_cudnn_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
779 780 781
create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding)
create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding)

C
cnn 已提交
782
create_test_cudnn_channel_last_class(TestConv3DOp_AsyPadding)
L
liym27 已提交
783 784 785
create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding)
create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding)

武毅 已提交
786 787
# FIXME(typhoonzero): find a way to determine if
# using cudnn > 6 in python
788
# class TestWithDilationCUDNN(TestWithDilation):
武毅 已提交
789
#     def init_op_type(self):
790
#         self.op_type = "conv3d"
武毅 已提交
791

L
liym27 已提交
792 793

# --------- test python API ---------------
C
cnn 已提交
794
class TestConv3DAPI(unittest.TestCase):
L
liym27 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
    def test_api(self):

        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCDHW = fluid.layers.data(
            name="input_NCDHW",
            shape=[2, 3, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        fluid.layers.conv3d(
            input=input_NDHWC,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=0,
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[1, 2, 1, 0, 1, 0],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NDHWC,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NDHWC")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding="SAME",
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding="VALID",
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")


C
cnn 已提交
870
class TestConv3DAPI_Error(unittest.TestCase):
L
liym27 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
    def test_api(self):
        input = fluid.layers.data(
            name="input",
            shape=[2, 5, 5, 5, 4],
            append_batch_size=False,
            dtype="float32")

        # ValueError: cudnn
        def run_1():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                use_cudnn=[0],
                data_format="NCDHW")

        self.assertRaises(ValueError, run_1)

        # ValueError: data_format
        def run_2():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=[3, 3, 3],
                stride=[1, 1, 1],
                padding=0,
                dilation=[1, 1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHWC")

        self.assertRaises(ValueError, run_2)

        # ValueError: padding
        def run_3():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding="SAMEE",
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NCDHW")

        self.assertRaises(ValueError, run_3)

        def run_4():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=[[0, 1], [0, 0], [0, 1], [0, 1], [0, 1]],
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NCDHW")

        self.assertRaises(ValueError, run_4)

        def run_5():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=0,
                stride=0,
                padding=[[0, 1], [0, 1], [0, 1], [0, 1], [0, 1]],
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_5)

        # ValueError: channel dimmention
        x = fluid.layers.data(
            name="x",
            shape=[2, 5, 5, 5, -1],
            append_batch_size=False,
            dtype="float32")

        def run_6():
            fluid.layers.conv3d(
                input=x,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_6)

        # ValueError: groups
        def run_7():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=3,
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_7)

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
        # ValueError: filter num
        def run_8():
            fluid.layers.conv3d(
                input=input,
                num_filters=0,
                filter_size=0,
                stride=0,
                padding=0,
                dilation=0,
                groups=1,
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_8)

L
liym27 已提交
1002

C
chengduoZH 已提交
1003 1004
if __name__ == '__main__':
    unittest.main()