lod_tensor.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18 19 20 21 22
import numpy as np

__all__ = ['create_lod_tensor', 'create_random_int_lodtensor']


K
Kexin Zhao 已提交
23
def create_lod_tensor(data, recursive_seq_lens, place):
Y
yuyang18 已提交
24 25
    """
    Create a lod tensor from a numpy array, a list, or an existing lod tensor.
26 27

    Create a lod tensor by doing the following:
Y
yuyang18 已提交
28

29
    1. Check that the length-based level of detail (LoD) also known as
K
Kexin Zhao 已提交
30
       recursive_sequence_lengths of the input is valid.
Y
yuyang18 已提交
31

K
Kexin Zhao 已提交
32
    2. Convert recursive_sequence_lengths to a offset-based LoD.
Y
yuyang18 已提交
33 34

    3. Copy the data from a numpy array, a list or a existing lod tensor to
35
       CPU or GPU device (based on input place).
Y
yuyang18 已提交
36

37
    4. Set the level of detail (LoD) using the offset-based LoD.
38

Y
yuyang18 已提交
39
    Examples:
40

Y
yuyang18 已提交
41 42
        Suppose we want LoDTensor to hold data for sequences of word, where each
        word is represented by an integer. If we want to create a LoDTensor to
K
Kexin Zhao 已提交
43
        represent two sentences, one of 2 words, and one of 3 words.
44

Y
yuyang18 已提交
45
        Then :code:`data` can be a numpy array of integers with shape (5, 1).
K
Kexin Zhao 已提交
46 47 48
        :code:`recursive_seq_lens` will be [[2, 3]], indicating the length(# of words) in each
        sentence. This length-based :code:`recursive_seq_lens` [[2, 3]] will be converted to
        offset-based LoD [[0, 2, 5]] inside the function call.
Y
yuyang18 已提交
49 50 51

    Please reference :ref:`api_guide_low_level_lod_tensor` for more details
    regarding LoD.
52 53

    Args:
Y
yuyang18 已提交
54
        data(numpy.ndarray|list|LoDTensor): a numpy array or a LoDTensor or a
K
Kexin Zhao 已提交
55
            list holding the data to be copied.
56
        recursive_seq_lens(list): a list of lists indicating the length-based level of detail
K
Kexin Zhao 已提交
57
            info specified by the user.
Y
yuyang18 已提交
58 59
        place(Place): CPU or GPU place indicating where the data in the new
            LoDTensor will be stored.
60 61

    Returns:
K
Kexin Zhao 已提交
62
        A fluid LoDTensor object with tensor data and recursive_seq_lens info.
63 64
    """
    if isinstance(data, core.LoDTensor):
K
Kexin Zhao 已提交
65
        return create_lod_tensor(np.array(data), recursive_seq_lens, place)
66
    elif isinstance(data, list):
67 68 69 70
        # When input data is a list, it only deal with the case where the base element
        # is an index of shape [1] and dtype int64 (e.g., word id). Hence, the generated
        # LoDTensor will be of shape [n, 1] and dtype int64, where `n` is the total number
        # of words or other indexes in the sequence.
K
Kexin Zhao 已提交
71
        new_recursive_seq_lens = []
72
        for seq in data:
K
Kexin Zhao 已提交
73 74 75 76
            new_recursive_seq_lens.append(len(seq))
        assert [
            new_recursive_seq_lens
        ] == recursive_seq_lens, "data and recursive_seq_lens do not match"
T
tensor-tang 已提交
77
        flattened_data = np.concatenate(data, axis=0)
78
        flattened_data = flattened_data.reshape([len(flattened_data), 1])
K
Kexin Zhao 已提交
79
        return create_lod_tensor(flattened_data, recursive_seq_lens, place)
80 81 82
    elif isinstance(data, np.ndarray):
        tensor = core.LoDTensor()
        tensor.set(data, place)
K
Kexin Zhao 已提交
83
        tensor.set_recursive_sequence_lengths(recursive_seq_lens)
84 85
        assert tensor.has_valid_recursive_sequence_lengths(
        ), "the provided lod info is invalid"
86 87
        return tensor
    else:
88 89
        raise TypeError(
            "data should be either a LoDTensor, a Numpy array or a list")
90 91


K
Kexin Zhao 已提交
92 93
def create_random_int_lodtensor(recursive_seq_lens, base_shape, place, low,
                                high):
Y
yuyang18 已提交
94 95
    """
    Create a LoDTensor containing random integers.
96

Y
yuyang18 已提交
97 98 99
    This function is frequently used in the book examples. So we revised it
    based on the new create_lod_tensor API and put it here in the lod_tensor
    module to simplify the code.
100 101

    The function does the following:
Y
yuyang18 已提交
102 103

    1. Calculate the overall shape of the LoDTensor based on the length-based
K
Kexin Zhao 已提交
104
       :code:`recursive_seq_lens` input and the shape of the basic element in
Y
yuyang18 已提交
105 106
       :code:`base_shape`.

107
    2. Create a numpy array of this shape.
Y
yuyang18 已提交
108

109 110
    3. Create the LoDTensor using create_lod_tensor API.

Y
yuyang18 已提交
111 112 113
    Suppose we want LoDTensor to hold data for sequences of word, where each
    word is represented by an integer. If we want to create a LoDTensor to
    represent two sentences, one of 2 words, and one of 3 words. Then
114 115
    'base_shape' is [1], input length-based 'recursive_seq_lens' is [[2, 3]].
    Then the overall shape of the LoDTensor would be [5, 1], holding 5 words
K
Kexin Zhao 已提交
116
    for two sentences.
117 118

    Args:
119
        recursive_seq_lens(list): a list of lists indicating the length-based
K
Kexin Zhao 已提交
120
            level of detail info specified by the user.
Y
yuyang18 已提交
121 122 123 124 125 126
        base_shape(list): the shape of the basic element to be held by the
            LoDTensor.
        place(Place): CPU or GPU place indicating where the data in the new
            LoDTensor will be stored.
        low(int): the lower bound of the random integers.
        high(int): the upper bound of the random integers.
127 128

    Returns:
129
        A fluid LoDTensor object with tensor data and recursive_seq_lens info.
130 131 132
    """
    assert isinstance(base_shape, list), "base_shape should be a list"
    # append the total number of basic elements to the front of its shape
K
Kexin Zhao 已提交
133
    overall_shape = [sum(recursive_seq_lens[-1])] + base_shape
134
    # the range of integer data elements is [low, high]
135
    data = np.random.random_integers(low, high, overall_shape).astype("int64")
K
Kexin Zhao 已提交
136
    return create_lod_tensor(data, recursive_seq_lens, place)