evaluator.py 13.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
Dong Zhihong 已提交
15
import numpy as np
武毅 已提交
16

17
import layers
Y
Yu Yang 已提交
18 19
from framework import Program, Variable, program_guard
import unique_name
20
from layer_helper import LayerHelper
21
from initializer import Constant
武毅 已提交
22

23 24 25
__all__ = [
    'Accuracy',
    'ChunkEvaluator',
26
    'EditDistance',
27
    'DetectionMAP',
28
]
Y
Yu Yang 已提交
29 30 31


def _clone_var_(block, var):
D
Dong Zhihong 已提交
32 33 34 35
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
36
        dtype=var.dtype,
D
Dong Zhihong 已提交
37 38 39 40 41
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


D
Dong Zhihong 已提交
42 43
class Evaluator(object):
    """
Y
Yu Yang 已提交
44
    Base Class for all evaluators
45

Y
Yu Yang 已提交
46
    Args:
47
        name(str): The name of evaluator. such as, "accuracy". Used for generate
Y
Yu Yang 已提交
48
            temporary variable name.
49
        main_program(Program, optional): The evaluator should be added to this
Y
Yu Yang 已提交
50
            main_program. Default default_main_program()
51
        startup_program(Program, optional):The parameter should be added to this
Y
Yu Yang 已提交
52
            startup_program. Default default_startup_program()
53

Y
Yu Yang 已提交
54
    Attributes:
55
        states(list): The list of state variables. states will be reset to zero
Y
Yu Yang 已提交
56
            when `reset` is invoked.
57
        metrics(list): The list of metrics variables. They will be calculate
Y
Yu Yang 已提交
58
            every mini-batch
D
Dong Zhihong 已提交
59
    """
武毅 已提交
60

D
Dong Zhihong 已提交
61
    def __init__(self, name, **kwargs):
Y
Yu Yang 已提交
62 63 64 65 66
        self.states = []
        self.metrics = []
        self.helper = LayerHelper(name, **kwargs)

    def reset(self, executor, reset_program=None):
D
Dong Zhihong 已提交
67
        """
Y
Yu Yang 已提交
68
        reset metric states at the begin of each pass/user specified batch
D
Dong Zhihong 已提交
69
        """
Y
Yu Yang 已提交
70 71 72
        if reset_program is None:
            reset_program = Program()

73 74 75 76 77 78
        with program_guard(main_program=reset_program):
            for var in self.states:
                assert isinstance(var, Variable)
                g_var = _clone_var_(reset_program.current_block(), var)
                layers.fill_constant(
                    shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var)
D
Dong Zhihong 已提交
79

Y
Yu Yang 已提交
80
        executor.run(reset_program)
81

Y
Yu Yang 已提交
82
    def eval(self, executor, eval_program=None):
D
Dong Zhihong 已提交
83
        """
Y
Yu Yang 已提交
84
        Evaluate the statistics merged by multiple mini-batches.
D
Dong Zhihong 已提交
85 86
        """
        raise NotImplementedError()
D
Dong Zhihong 已提交
87

Y
Yu Yang 已提交
88
    def create_state(self, suffix, dtype, shape):
武毅 已提交
89
        """
90 91
        Create state variable.

Y
Yu Yang 已提交
92
        NOTE: It is not a public API.
93

Y
Yu Yang 已提交
94
        Args:
95
            suffix(str): the state suffix.
96
            dtype(str|core.VarDesc.VarType): the state data type
97
            shape(tuple|list): the shape of state
Y
Yu Yang 已提交
98 99

        Returns: State variable
武毅 已提交
100

D
Dong Zhihong 已提交
101
        """
Y
Yu Yang 已提交
102
        state = self.helper.create_variable(
Y
Yu Yang 已提交
103
            name="_".join([unique_name.generate(self.helper.name), suffix]),
Y
Yu Yang 已提交
104 105 106 107 108
            persistable=True,
            dtype=dtype,
            shape=shape)
        self.states.append(state)
        return state
D
Dong Zhihong 已提交
109

D
Dong Zhihong 已提交
110

G
guosheng 已提交
111 112
class ChunkEvaluator(Evaluator):
    """
113 114
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
G
guosheng 已提交
115 116 117
    numbers.
    """

118 119 120 121 122 123 124 125
    def __init__(
            self,
            input,
            label,
            chunk_scheme,
            num_chunk_types,
            excluded_chunk_types=None, ):
        super(ChunkEvaluator, self).__init__("chunk_eval")
G
guosheng 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

        self.num_infer_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_infer_chunks')
        self.num_label_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_label_chunks')
        self.num_correct_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_correct_chunks')
        precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
            input=input,
            label=label,
            chunk_scheme=chunk_scheme,
            num_chunk_types=num_chunk_types,
141
            excluded_chunk_types=excluded_chunk_types, )
G
guosheng 已提交
142 143
        layers.sums(
            input=[self.num_infer_chunks, num_infer_chunks],
144
            out=self.num_infer_chunks)
G
guosheng 已提交
145 146
        layers.sums(
            input=[self.num_label_chunks, num_label_chunks],
147
            out=self.num_label_chunks)
G
guosheng 已提交
148 149
        layers.sums(
            input=[self.num_correct_chunks, num_correct_chunks],
150
            out=self.num_correct_chunks)
G
guosheng 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        self.metrics.extend([precision, recall, f1_score])

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
            eval_program,
            fetch_list=[_clone_var_(block, state) for state in self.states])
        num_infer_chunks = num_infer_chunks[0]
        num_label_chunks = num_label_chunks[0]
        num_correct_chunks = num_correct_chunks[0]
        precision = float(
            num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
        recall = float(
            num_correct_chunks) / num_label_chunks if num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if num_correct_chunks else 0
        return np.array(
            [precision], dtype='float32'), np.array(
                [recall], dtype='float32'), np.array(
                    [f1_score], dtype='float32')
174 175 176 177


class EditDistance(Evaluator):
    """
W
wanghaoshuang 已提交
178
    Accumulate edit distance sum and sequence number from mini-batches and
179
    compute the average edit_distance and instance error of all batches.
W
wanghaoshuang 已提交
180 181

    Args:
W
wanghaoshuang 已提交
182
        input: the sequences predicted by network.
W
wanghaoshuang 已提交
183 184 185 186 187 188 189 190 191 192 193 194
        label: the target sequences which must has same sequence count
        with input.
        ignored_tokens(list of int): Tokens that should be removed before
        calculating edit distance.

    Example:

        exe = fluid.executor(place)
        distance_evaluator = fluid.Evaluator.EditDistance(input, label)
        for epoch in PASS_NUM:
            distance_evaluator.reset(exe)
            for data in batches:
W
wanghaoshuang 已提交
195
                loss = exe.run(fetch_list=[cost])
196
            distance, instance_error = distance_evaluator.eval(exe)
W
wanghaoshuang 已提交
197 198

        In the above example:
199
        'distance' is the average of the edit distance in a pass.
200
        'instance_error' is the instance error rate in a pass.
W
wanghaoshuang 已提交
201

202 203
    """

W
wanghaoshuang 已提交
204
    def __init__(self, input, label, ignored_tokens=None, **kwargs):
205 206 207 208 209
        super(EditDistance, self).__init__("edit_distance", **kwargs)
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

210 211
        self.total_distance = self.create_state(
            dtype='float32', shape=[1], suffix='total_distance')
212
        self.seq_num = self.create_state(
W
wanghaoshuang 已提交
213
            dtype='int64', shape=[1], suffix='seq_num')
214 215
        self.instance_error = self.create_state(
            dtype='int64', shape=[1], suffix='instance_error')
216
        distances, seq_num = layers.edit_distance(
W
wanghaoshuang 已提交
217
            input=input, label=label, ignored_tokens=ignored_tokens)
218 219 220 221 222

        zero = layers.fill_constant(shape=[1], value=0.0, dtype='float32')
        compare_result = layers.equal(distances, zero)
        compare_result_int = layers.cast(x=compare_result, dtype='int')
        seq_right_count = layers.reduce_sum(compare_result_int)
223 224
        instance_error_count = layers.elementwise_sub(
            x=seq_num, y=seq_right_count)
225 226 227 228
        total_distance = layers.reduce_sum(distances)
        layers.sums(
            input=[self.total_distance, total_distance],
            out=self.total_distance)
229
        layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
230 231 232
        layers.sums(
            input=[self.instance_error, instance_error_count],
            out=self.instance_error)
233
        self.metrics.append(total_distance)
234
        self.metrics.append(instance_error_count)
235 236 237 238 239 240

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        with program_guard(main_program=eval_program):
241
            total_distance = _clone_var_(block, self.total_distance)
242
            seq_num = _clone_var_(block, self.seq_num)
243
            instance_error = _clone_var_(block, self.instance_error)
244
            seq_num = layers.cast(x=seq_num, dtype='float32')
245
            instance_error = layers.cast(x=instance_error, dtype='float32')
246
            avg_distance = layers.elementwise_div(x=total_distance, y=seq_num)
247 248 249 250
            avg_instance_error = layers.elementwise_div(
                x=instance_error, y=seq_num)
            result = executor.run(
                eval_program, fetch_list=[avg_distance, avg_instance_error])
251
        return np.array(result[0]), np.array(result[1])
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368


class DetectionMAP(Evaluator):
    """
    Calculate the detection mean average precision (mAP).

    TODO (Dang Qingqing): update the following doc.
    The general steps are as follows:
    1. calculate the true positive and false positive according to the input
        of detection and labels.
    2. calculate mAP value, support two versions: '11 point' and 'integral'.

    Please get more information from the following articles:
      https://sanchom.wordpress.com/tag/average-precision/
      https://arxiv.org/abs/1512.02325

    Args:
        input (Variable): The detection results, which is a LoDTensor with shape
            [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
        gt_label (Variable): The ground truth label index, which is a LoDTensor
            with shape [N, 1]. 
        gt_difficult (Variable): Whether this ground truth is a difficult
            bounding box (bbox), which is a LoDTensor [N, 1].
        gt_box (Variable): The ground truth bounding box (bbox), which is a
            LoDTensor with shape [N, 6]. The layout is [xmin, ymin, xmax, ymax].
        overlap_threshold (float): The threshold for deciding true/false
            positive, 0.5 by defalut.
        evaluate_difficult (bool): Whether to consider difficult ground truth
            for evaluation, True by defalut.
        ap_version (string): The average precision calculation ways, it must be
            'integral' or '11point'. Please check
            https://sanchom.wordpress.com/tag/average-precision/ for details.
            - 11point: the 11-point interpolated average precision.
            - integral: the natural integral of the precision-recall curve.

    Example:

        exe = fluid.executor(place)
        map_evaluator = fluid.Evaluator.DetectionMAP(input,
            gt_label, gt_difficult, gt_box)
        cur_map, accum_map = map_evaluator.get_map_var()
        fetch = [cost, cur_map, accum_map]
        for epoch in PASS_NUM:
            map_evaluator.reset(exe)
            for data in batches:
                loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)

        In the above example:

        'cur_map_v' is the mAP of current mini-batch.
        'accum_map_v' is the accumulative mAP of one pass.
    """

    def __init__(self,
                 input,
                 gt_label,
                 gt_box,
                 gt_difficult,
                 overlap_threshold=0.5,
                 evaluate_difficult=True,
                 ap_version='integral'):
        super(DetectionMAP, self).__init__("map_eval")

        gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype)
        gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype)
        label = layers.concat([gt_label, gt_difficult, gt_box], axis=1)

        # calculate mean average precision (mAP) of current mini-batch
        map = layers.detection_map(
            input,
            label,
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            ap_version=ap_version)

        self.create_state(dtype='int32', shape=None, suffix='accum_pos_count')
        self.create_state(dtype='float32', shape=None, suffix='accum_true_pos')
        self.create_state(dtype='float32', shape=None, suffix='accum_false_pos')

        self.has_state = None
        var = self.helper.create_variable(
            persistable=True, dtype='int32', shape=[1])
        self.helper.set_variable_initializer(
            var, initializer=Constant(value=int(0)))
        self.has_state = var

        # calculate accumulative mAP
        accum_map = layers.detection_map(
            input,
            label,
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            has_state=self.has_state,
            input_states=self.states,
            out_states=self.states,
            ap_version=ap_version)

        layers.fill_constant(
            shape=self.has_state.shape,
            value=1,
            dtype=self.has_state.dtype,
            out=self.has_state)

        self.cur_map = map
        self.accum_map = accum_map

    def get_map_var(self):
        return self.cur_map, self.accum_map

    def reset(self, executor, reset_program=None):
        if reset_program is None:
            reset_program = Program()
        with program_guard(main_program=reset_program):
            var = _clone_var_(reset_program.current_block(), self.has_state)
            layers.fill_constant(
                shape=var.shape, value=0, dtype=var.dtype, out=var)
        executor.run(reset_program)