conv_cudnn_op.cu 59.5 KB
Newer Older
L
liym27 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spopecific language governing permissions and
limitations under the License. */

#include <utility>
#include <vector>
17

L
liym27 已提交
18 19 20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/memory/memory.h"
22 23 24
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
L
liym27 已提交
25
#include "paddle/fluid/operators/conv_cudnn_helper.h"
26
#endif
L
liym27 已提交
27
#include "paddle/fluid/operators/conv_op.h"
28
#include "paddle/fluid/operators/math/padding.h"
L
liym27 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/profiler.h"

DECLARE_bool(cudnn_deterministic);
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

46 47 48 49
static inline bool IsVoltaOrLater(const platform::CUDADeviceContext& dev_ctx) {
  return dev_ctx.GetComputeCapability() >= 70;
}

L
liym27 已提交
50 51 52 53 54
template <typename T>
class CUDNNConvOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
55 56 57
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
58 59 60 61 62 63 64 65
    const Tensor* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
66

L
liym27 已提交
67 68
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
69 70 71 72 73 74
    bool deterministic = FLAGS_cudnn_deterministic;
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));
L
liym27 已提交
75 76 77 78 79 80

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

81 82
    auto dtype = platform::CudnnDataType<T>::type;

83 84 85 86
#ifdef PADDLE_WITH_HIP
    // HIP MIOPEN ONLY SUPPORT NCHW format
    auto compute_format = DataLayout::kNCHW;
#else
87 88 89 90 91 92 93 94
    // Tensor Core introduced from Volta GPUs supports more faster conv op
    // with FP16 in NHWC data format.
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    // We will only do data format conversion from NHWC to NCHW.
    // cudnn will convert NCHW to NHWC automatically on Tensor Core.
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
95
#endif
96 97 98 99
    VLOG(3) << "Compute ConvOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
100 101 102
    // ------------ transformed tensor -----------
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output(output->type());
103
    Tensor transformed_filter_channel(filter->type());
L
liym27 已提交
104
    T* output_data = nullptr;
105 106
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
L
liym27 已提交
107 108 109 110 111 112 113 114 115
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, output,
                                                           &transformed_output);

    } else {
116 117 118 119 120 121 122 123 124 125 126
      transformed_input_channel.ShareDataWith(*input);
      transformed_output.ShareDataWith(*output);
    }
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
L
liym27 已提交
127 128 129 130 131
    }
    output_data = transformed_output.data<T>();

    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
132
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
133
    framework::DDim in_data_dims;
134 135 136 137 138 139 140 141 142 143 144
    framework::DDim filter_data_dims;

    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
145 146 147 148 149 150

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
151
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
152 153 154 155 156 157 158

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
159 160 161 162 163 164 165

      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
166 167 168 169 170 171

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
172 173 174 175 176 177 178 179 180 181 182 183 184 185
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
200
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
201 202 203 204
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
205
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
206 207 208 209
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
210 211
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
212 213 214
      }

    } else {
215
      transformed_input.ShareDataWith(transformed_input_channel);
L
liym27 已提交
216 217 218 219 220 221 222 223 224 225 226 227
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
228
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
229 230

    // ------------------- cudnn descriptors ---------------------
231 232 233 234 235 236 237
    ConvArgs args{&transformed_input,
                  &transformed_filter_channel,
                  &transformed_output,
                  strides,
                  padding_common,
                  dilations,
                  dtype};
L
liym27 已提交
238 239 240

    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
241 242 243 244 245
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
246 247 248 249
    }
    auto layout_format = GetCudnnTensorFormat(layout);

    args.handle = handle;
250 251

#ifdef PADDLE_WITH_HIP
252
    // MIOPEN need to set groups in cdesc in miopen_desc.h
253 254 255
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn(), groups);
#else
A
AshburnLee 已提交
256 257
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn());
258
#endif
L
liym27 已提交
259

260
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
261 262 263
    // cudnn 7 can support groups, no need to do it manually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
264 265 266
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSetConvolutionGroupCount(args.cdesc.desc(),
                                                         groups));
L
liym27 已提交
267
    groups = 1;
268 269 270 271
#endif
#ifdef PADDLE_WITH_HIP
    // MIOPEN do not set groups in wdesc after set groups in cdesc
    groups = 1;
L
liym27 已提交
272
#endif
273 274 275
    args.idesc.set(transformed_input, layout_format);
    args.wdesc.set(transformed_filter_channel, layout_format, groups);
    args.odesc.set(transformed_output, layout_format);
L
liym27 已提交
276 277
    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
278 279 280 281 282 283 284 285 286 287 288 289

    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNHWC, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    }
L
liym27 已提交
290 291 292

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
293
    int group_offset_filter = transformed_filter_channel.numel() / groups;
L
liym27 已提交
294 295
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size = 0;  // final workspace to allocate.
296 297 298 299
// ------------------- cudnn conv algorithm ---------------------
#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t algo{};
    using search = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
300
    workspace_size = search::GetWorkspaceSize(args);
301 302
    algo = search::Find<T>(args, exhaustive_search, deterministic,
                           workspace_size, ctx);
303
#else
L
liym27 已提交
304 305
    cudnnConvolutionFwdAlgo_t algo{};
    using search = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
306
    algo = search::Find<T>(args, exhaustive_search, deterministic, ctx);
L
liym27 已提交
307
    workspace_size = search::GetWorkspaceSize(args, algo);
308
#endif
L
liym27 已提交
309

310
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
311 312 313 314 315 316 317 318 319
    // when groups > 1, SearchAlgorithm find algo is CUDNN_CONVOLUTION_\
    // FWD_ALGO_WINOGRAD_NONFUSED, but this kind of algorithm is unstable
    // in forward computation, so change the algorithm to CUDNN_CONVOLUTION_\
    // FWD_ALGO_IMPLICIT_GEMM manually.
    if (ctx.Attr<int>("groups") > 1) {
      algo = static_cast<cudnnConvolutionFwdAlgo_t>(0);
    }
#endif

L
liym27 已提交
320
    // ------------------- cudnn conv forward ---------------------
321
    ScalingParamType<T> alpha = 1.0f;
322 323
    ScalingParamType<T> beta = 0.0f;

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
// NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
// ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f : 0.0f;
// VLOG(4) << "Conv: use_addto = " << ctx.Attr<bool>("use_addto");

#ifdef PADDLE_WITH_HIP
    workspace_handle.RunFunc(
        [&](void* workspace_ptr) {
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::miopenConvolutionForward(
                  handle, &alpha, args.idesc.desc(), input_data,
                  args.wdesc.desc(), filter_data, args.cdesc.desc(), algo,
                  &beta, args.odesc.desc(), output_data, workspace_ptr,
                  workspace_size));
        },
        workspace_size);
#else
L
liym27 已提交
340 341 342
    for (int i = 0; i < groups; i++) {
      workspace_handle.RunFunc(
          [&](void* workspace_ptr) {
343 344 345 346 347 348 349
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::cudnnConvolutionForward(
                    handle, &alpha, args.idesc.desc(),
                    input_data + i * group_offset_in, args.wdesc.desc(),
                    filter_data + i * group_offset_filter, args.cdesc.desc(),
                    algo, workspace_ptr, workspace_size, &beta,
                    args.odesc.desc(), output_data + i * group_offset_out));
L
liym27 已提交
350 351 352
          },
          workspace_size);
    }
353
#endif
L
liym27 已提交
354

355
    if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
356 357 358 359 360 361 362 363 364 365 366
      TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
          ctx, &transformed_output, output);
    }
  }
};

template <typename T>
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
367 368 369
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (filter_grad) {
      filter_grad->mutable_data<T>(ctx.GetPlace());
    }

    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    int groups = ctx.Attr<int>("groups");
388

L
liym27 已提交
389 390 391
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    bool deterministic = FLAGS_cudnn_deterministic;
392 393 394 395 396 397
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));

L
liym27 已提交
398 399 400
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

401
    auto dtype = platform::CudnnDataType<T>::type;
402 403 404 405 406

#ifdef PADDLE_WITH_HIP
    // HIP MIOPEN ONLY SUPPORT NCHW format
    auto compute_format = DataLayout::kNCHW;
#else
407 408 409 410
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
411
#endif
412 413 414 415
    VLOG(3) << "Compute ConvGradOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
416 417 418 419
    // transform Tensor
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output_grad_channel(output_grad->type());
    Tensor transformed_input_grad_channel(input->type());
420 421
    Tensor transformed_filter_channel(filter->type());
    Tensor transformed_filter_grad_channel(filter->type());
L
liym27 已提交
422

423 424 425
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input, output_grad, input_grad and tensor from "
                 "NHWC to NCHW.";
L
liym27 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);

      if (input_grad) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, input_grad, &transformed_input_grad_channel);
439 440 441 442 443 444
        // NOTE(zhiqiu): If inplace_addto strategy is enabled, we need to copy
        // the data of input_grad to transformed_input_grad_channel.
        if (ctx.Attr<bool>("use_addto")) {
          TransToChannelFirst<platform::CUDADeviceContext, T>(
              ctx, input_grad, &transformed_input_grad_channel);
        }
L
liym27 已提交
445 446
      }
    } else {
447 448
      transformed_input_channel.ShareDataWith(*input);
      transformed_output_grad_channel.ShareDataWith(*output_grad);
L
liym27 已提交
449 450 451 452 453
      if (input_grad) {
        transformed_input_grad_channel.ShareDataWith(*input_grad);
      }
    }

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter and filter_grad tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);

      if (filter_grad) {
        ResizeToChannelLast<platform::CUDADeviceContext, T>(
            ctx, filter_grad, &transformed_filter_grad_channel);
      }
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
      if (filter_grad) {
        transformed_filter_grad_channel.ShareDataWith(*filter_grad);
      }
    }

L
liym27 已提交
472 473
    //  update paddings
    auto in_dims = transformed_input_channel.dims();
474
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
475
    framework::DDim in_data_dims;
476 477 478 479 480 481 482 483 484 485
    framework::DDim filter_data_dims;
    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
486 487 488 489 490 491 492
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    // cuDNN only supports padding the same amount on every dimension.
    // So we create a new padded input tensor.
    int data_dim = strides.size();  // 2d or 3d
493
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
494 495 496 497 498 499 500 501 502 503
    Tensor transformed_input(input->type());
    Tensor transformed_input_grad(input->type());
    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
504 505 506 507 508 509
      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
510 511 512 513

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
514 515 516 517 518 519 520 521 522 523 524 525 526 527
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);

      transformed_input_grad.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      if (input_grad) {
        transformed_input_grad =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
      // pad for input
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
550
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
551 552 553 554
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
555
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
556 557 558 559
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
560 561
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
      }
    } else {
      transformed_input.ShareDataWith(transformed_input_channel);
      if (input_grad) {
        transformed_input_grad.ShareDataWith(transformed_input_grad_channel);
      }
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
    const T* output_grad_data = transformed_output_grad_channel.data<T>();
581
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
582 583 584 585 586
    T* filter_grad_data = nullptr;
    T* input_grad_data = nullptr;
    T* transformed_input_grad_data = nullptr;

    ConvArgs args1{&transformed_input_grad,
587
                   &transformed_filter_channel,
L
liym27 已提交
588 589 590
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
591 592
                   dilations,
                   dtype};
L
liym27 已提交
593
    ConvArgs args2{&transformed_input,
594
                   &transformed_filter_grad_channel,
L
liym27 已提交
595 596 597
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
598 599
                   dilations,
                   dtype};
L
liym27 已提交
600 601

    auto handle = dev_ctx.cudnn_handle();
602 603 604 605 606
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
607 608 609 610 611 612
    }
    auto layout_tensor = GetCudnnTensorFormat(layout);
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
613 614 615 616 617 618 619 620 621 622 623
    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNHWC, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNCHW, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    }
L
liym27 已提交
624 625 626

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
627
    int group_offset_filter = transformed_filter_channel.numel() / groups;
628 629 630 631 632 633 634
// ------------------- cudnn backward algorithm ---------------------
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t data_algo =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
L
liym27 已提交
635 636 637 638
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
639
#endif
L
liym27 已提交
640
    size_t workspace_size = 0;
641 642
    int iwo_groups = groups;
    int c_groups = 1;
L
liym27 已提交
643

644
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
645 646 647 648 649 650 651 652 653 654
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif

    if (input_grad) {
      // ------------------- cudnn descriptors ---------------------
      input_grad_data = input_grad->data<T>();
      transformed_input_grad_data = transformed_input_grad.data<T>();
      args1.handle = handle;
655 656 657
      args1.idesc.set(transformed_input_grad, layout_tensor);
      args1.wdesc.set(transformed_filter_channel, layout_tensor, iwo_groups);
      args1.odesc.set(transformed_output_grad_channel, layout_tensor);
A
AshburnLee 已提交
658 659
      args1.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
L
liym27 已提交
660

661 662
#ifdef PADDLE_WITH_HIP
      using search1 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
663 664 665 666
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1));
      data_algo = search1::Find<T>(args1, exhaustive_search, deterministic,
                                   workspace_size, ctx);
667
#else
L
liym27 已提交
668 669
      using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
670
          search1::Find<T>(args1, exhaustive_search, deterministic, ctx);
L
liym27 已提交
671 672
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
673
#endif
L
liym27 已提交
674 675 676 677
    }

    if (filter_grad) {
      // ------------------- cudnn descriptors ---------------------
678
      filter_grad_data = transformed_filter_grad_channel.data<T>();
L
liym27 已提交
679
      args2.handle = handle;
680 681 682 683
      args2.idesc.set(transformed_input, layout_tensor);
      args2.wdesc.set(transformed_filter_grad_channel, layout_tensor,
                      iwo_groups);
      args2.odesc.set(transformed_output_grad_channel, layout_tensor);
A
AshburnLee 已提交
684 685
      args2.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
686 687
#ifdef PADDLE_WITH_HIP
      using search2 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
688 689 690 691
      workspace_size =
          std::max(workspace_size, search2::GetWorkspaceSize(args2));
      filter_algo = search2::Find<T>(args2, exhaustive_search, deterministic,
                                     workspace_size, ctx);
692
#else
L
liym27 已提交
693 694
      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
695
          search2::Find<T>(args2, exhaustive_search, deterministic, ctx);
L
liym27 已提交
696 697
      workspace_size = std::max(workspace_size,
                                search2::GetWorkspaceSize(args2, filter_algo));
698
#endif
L
liym27 已提交
699 700 701
    }

    // ------------------- cudnn conv backward data ---------------------
702
    ScalingParamType<T> alpha = 1.0f;
R
ronnywang 已提交
703 704 705 706
#ifdef PADDLE_WITH_HIP
    // MIOPEN ONLY support beta to be 0.0f
    ScalingParamType<T> beta = 0.0f;
#else
707
    ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f : 0.0f;
R
ronnywang 已提交
708
#endif
709 710
    VLOG(4) << "Conv_grad: use_addto = " << ctx.Attr<bool>("use_addto");

L
liym27 已提交
711
    if (input_grad) {
712 713
// When beta is 0, it is unnecessary to reset input_grad.
// When beta is 1, the output cannot be reset since addt strategy used.
714
#ifdef PADDLE_WITH_HIP
R
ronnywang 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
      if (ctx.Attr<bool>("use_addto")) {
        Tensor temp_tensor(transformed_input_grad.type());
        temp_tensor.Resize(transformed_input_grad.dims());
        T* temp_tensor_data = temp_tensor.mutable_data<T>(ctx.GetPlace());
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardData(
                      handle, &alpha, args1.odesc.desc(), output_grad_data,
                      args1.wdesc.desc(), filter_data, args1.cdesc.desc(),
                      data_algo, &beta, args1.idesc.desc(), temp_tensor_data,
                      cudnn_workspace_ptr, workspace_size));
            },
            workspace_size);
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenOpTensor(
            handle, miopenTensorOpAdd, &alpha, args1.idesc.desc(),
            transformed_input_grad_data, &alpha, args1.idesc.desc(),
            temp_tensor_data, &beta, args1.idesc.desc(),
            transformed_input_grad_data));
      } else {
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardData(
                      handle, &alpha, args1.odesc.desc(), output_grad_data,
                      args1.wdesc.desc(), filter_data, args1.cdesc.desc(),
                      data_algo, &beta, args1.idesc.desc(),
                      transformed_input_grad_data, cudnn_workspace_ptr,
                      workspace_size));
            },
            workspace_size);
      }

748
#else
749
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
750 751
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
752 753 754 755 756 757 758 759
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args1.wdesc.desc(),
                      filter_data + i * group_offset_filter, args1.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args1.cdesc.desc(), data_algo, cudnn_workspace_ptr,
                      workspace_size, &beta, args1.idesc.desc(),
                      transformed_input_grad_data + i * group_offset_in));
L
liym27 已提交
760 761 762
            },
            workspace_size);
      }
763
#endif
W
wangchaochaohu 已提交
764 765 766
      if (!is_sys_pad) {
        std::vector<int> starts(transformed_input_channel.dims().size(), 0);
        std::vector<int> axes(transformed_input_channel.dims().size(), 0);
L
liym27 已提交
767

W
wangchaochaohu 已提交
768 769 770 771
        for (size_t i = 0; i < transformed_input_channel.dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
L
liym27 已提交
772

W
wangchaochaohu 已提交
773 774
        transformed_input_grad_channel.mutable_data(ctx.GetPlace());
        if (transformed_input_channel.dims().size() == 4) {
775
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
776 777 778
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        } else {
779
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
780 781 782
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        }
L
liym27 已提交
783 784
      }

785
      if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
786 787 788 789
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_input_grad_channel, input_grad);
      }
    }
790 791 792

    // filter_grad do not use inplace addto.
    ScalingParamType<T> beta_filter = 0.0f;
L
liym27 已提交
793 794
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
795
// Because beta is zero, it is unnecessary to reset filter_grad.
796
#ifdef PADDLE_WITH_HIP
797 798 799 800 801 802 803 804 805 806
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenConvolutionBackwardWeights(
                    handle, &alpha, args2.odesc.desc(), output_grad_data,
                    args2.idesc.desc(), input_data, args2.cdesc.desc(),
                    filter_algo, &beta, args2.wdesc.desc(), filter_grad_data,
                    cudnn_workspace_ptr, workspace_size));
          },
          workspace_size);
807
#else
808
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
809 810
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
811 812 813 814 815 816
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args2.idesc.desc(),
                      input_data + i * group_offset_in, args2.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args2.cdesc.desc(), filter_algo, cudnn_workspace_ptr,
817
                      workspace_size, &beta_filter, args2.wdesc.desc(),
818
                      filter_grad_data + i * group_offset_filter));
L
liym27 已提交
819 820 821
            },
            workspace_size);
      }
822
#endif
823 824 825 826 827

      if (compute_format == DataLayout::kNHWC) {
        TransToChannelFirst<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_filter_grad_channel, filter_grad);
      }
L
liym27 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    }
  }
};

/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv(ddI, W) + conv(I, ddW)
 * dW = conv_bp_filter(ddI, dO)
 * dI = conv_bp_data(ddW, dO)
 */
template <typename T>
class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
844 845 846
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
847 848 849 850 851 852 853 854 855 856 857
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");
    if (ddO) {
      ddO->mutable_data<T>(ctx.GetPlace());
L
lvmengsi 已提交
858 859
      math::SetConstant<platform::CUDADeviceContext, T> set_zero;
      set_zero(dev_ctx, ddO, static_cast<T>(0));
L
liym27 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
    }
    if (dW) {
      dW->mutable_data<T>(ctx.GetPlace());
    }
    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
    }

    // const T* x = X->data<T>();
    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;
    T* transformed_dx = nullptr;
    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
880

L
liym27 已提交
881 882 883
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    bool deterministic = FLAGS_cudnn_deterministic;
884 885 886 887 888 889
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));

L
liym27 已提交
890 891 892 893 894 895 896 897 898
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensors to channel first-----------
    Tensor transformed_X_channel(X->type());
    Tensor transformed_dO_channel(dO->type());
L
lvmengsi 已提交
899
    Tensor transformed_ddX_channel(X->type());
L
liym27 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

    Tensor transformed_ddO_channel(dO->type());
    Tensor transformed_dX_channel(X->type());

    if (channel_last) {
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);

L
lvmengsi 已提交
915 916 917 918 919 920
      if (ddX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
        TransToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
      }
L
liym27 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934

      if (ddO) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddO, &transformed_ddO_channel);
      }
      if (dX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, dX, &transformed_dX_channel);
        transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
      }

    } else {
      transformed_X_channel = *X;
      transformed_dO_channel = *dO;
L
lvmengsi 已提交
935 936 937
      if (ddX) {
        transformed_ddX_channel = *ddX;
      }
L
liym27 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
      if (ddO) {
        transformed_ddO_channel.ShareDataWith(*ddO);
      }
      if (dX) {
        transformed_dX_channel.ShareDataWith(*dX);
      }
    }

    auto in_dims = transformed_X_channel.dims();
    auto filter_dims = W->dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
957
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
    Tensor transformed_X(X->type());
    Tensor transformed_ddX(X->type());

    Tensor transformed_dX(X->type());

    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(X->dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_X_channel.dims()[0];
      new_input_shape_vec[1] = transformed_X_channel.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_X_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_X.Resize(new_input_shape);
      transformed_ddX.Resize(new_input_shape);
      transformed_dX.Resize(new_input_shape);

      transformed_X =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
L
lvmengsi 已提交
990 991 992 993 994
      if (ddX) {
        transformed_ddX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
L
liym27 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005
      if (dX) {
        transformed_dX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }

      // pad for input
      const int rank = X->dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
1006
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
1007
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
1008 1009 1010 1011 1012
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
1013 1014
        } break;
        case 5: {
1015
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
1016
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
1017 1018 1019 1020 1021
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
1022 1023
        } break;
        default:
1024 1025
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
1026 1027 1028 1029
      }

    } else {
      transformed_X.ShareDataWith(transformed_X_channel);
L
lvmengsi 已提交
1030 1031 1032
      if (ddX) {
        transformed_ddX.ShareDataWith(transformed_ddX_channel);
      }
L
liym27 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
      if (dX) {
        transformed_dX.ShareDataWith(transformed_dX_channel);
      }

      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* x = transformed_X.data<T>();

    int iwo_group = groups;
    int c_group = 1;
1052
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
1053 1054
    iwo_group = 1;
    c_group = groups;
1055
    groups = 1;
L
liym27 已提交
1056 1057 1058 1059 1060
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    ConvArgs args1{&transformed_ddX,
                   W,
                   &transformed_ddO_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{
        &transformed_X, ddW,  &transformed_ddO_channel, strides, padding_common,
        dilations,      dtype};
    ConvArgs args3{&transformed_ddX,
                   dW,
                   &transformed_dO_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args4{
        &transformed_dX, ddW,  &transformed_dO_channel, strides, padding_common,
        dilations,       dtype};
L
liym27 已提交
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t fwd_algo1 =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvFwdAlgorithm_t fwd_algo2 =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvBwdDataAlgorithm_t data_algo =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
L
liym27 已提交
1092 1093 1094 1095 1096 1097 1098 1099
    cudnnConvolutionFwdAlgo_t fwd_algo1 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t fwd_algo2 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
1100
#endif
L
liym27 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

    auto layout = GetCudnnTensorFormat(DataLayout::kNCHW);

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;

    T* transformed_ddy_channel = nullptr;
    if (ddO) {
      ddy = ddO->data<T>();
      transformed_ddy_channel = transformed_ddO_channel.data<T>();
      if (ddX) {
        args1.handle = handle;
        args1.idesc.set(transformed_ddX, iwo_group);
        args1.wdesc.set(*W, layout, iwo_group);
        args1.odesc.set(transformed_ddO_channel, iwo_group);
A
AshburnLee 已提交
1116 1117
        args1.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1118

1119 1120
#ifdef PADDLE_WITH_HIP
        using search1 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1121 1122 1123
        workspace_size = search1::GetWorkspaceSize(args1);
        fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false,
                                     workspace_size, ctx);
1124
#else
L
liym27 已提交
1125
        using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1126
        fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false, ctx);
L
liym27 已提交
1127
        workspace_size = search1::GetWorkspaceSize(args1, fwd_algo1);
1128
#endif
L
liym27 已提交
1129 1130 1131 1132 1133 1134 1135 1136
      }

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(transformed_X, iwo_group);
        args2.wdesc.set(*ddW, layout, iwo_group);
        args2.odesc.set(transformed_ddO_channel, iwo_group);
A
AshburnLee 已提交
1137 1138
        args2.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1139

1140 1141
#ifdef PADDLE_WITH_HIP
        using search2 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1142 1143 1144 1145
        workspace_size =
            std::max(workspace_size, search2::GetWorkspaceSize(args2));
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false,
                                     workspace_size, ctx);
1146
#else
L
liym27 已提交
1147
        using search2 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1148
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false, ctx);
L
liym27 已提交
1149 1150
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, fwd_algo2));
1151
#endif
L
liym27 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160
      }
    }

    if (dW && ddX) {
      dw = dW->data<T>();
      args3.handle = handle;
      args3.idesc.set(transformed_ddX, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);
      args3.odesc.set(transformed_dO_channel, iwo_group);
A
AshburnLee 已提交
1161 1162
      args3.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1163

1164 1165
#ifdef PADDLE_WITH_HIP
      using search3 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
1166 1167 1168 1169
      workspace_size =
          std::max(workspace_size, search3::GetWorkspaceSize(args3));
      filter_algo = search3::Find<T>(args3, exhaustive_search, deterministic,
                                     workspace_size, ctx);
1170
#else
L
liym27 已提交
1171 1172
      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
1173
          search3::Find<T>(args3, exhaustive_search, deterministic, ctx);
L
liym27 已提交
1174 1175
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
1176
#endif
L
liym27 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185
    }

    if (ddW && dX) {
      transformed_dx = transformed_dX.data<T>();

      args4.handle = handle;
      args4.idesc.set(transformed_dX, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(transformed_dO_channel, iwo_group);
A
AshburnLee 已提交
1186 1187
      args4.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1188

1189 1190
#ifdef PADDLE_WITH_HIP
      using search4 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
1191 1192 1193 1194
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4));
      data_algo = search4::Find<T>(args4, exhaustive_search, deterministic,
                                   workspace_size, ctx);
1195
#else
L
liym27 已提交
1196 1197
      using search4 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
1198
          search4::Find<T>(args4, exhaustive_search, deterministic, ctx);
L
liym27 已提交
1199 1200
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
1201
#endif
L
liym27 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    }

    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(transformed_X.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h,
             &i_w);

    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(transformed_dO_channel.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
             &o_h, &o_w);

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
    int group_offset_filter = W->numel() / groups;

1216 1217 1218 1219 1220 1221 1222
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;

    // NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
    // ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f :
    // 0.0f;
    // VLOG(4) << "Conv_grad_grad: use_addto = " << ctx.Attr<bool>("use_addto");
L
liym27 已提交
1223 1224 1225 1226 1227
    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      if (ddX) {
        ddx = transformed_ddX.data<T>();
1228
#ifdef PADDLE_WITH_HIP
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args1.idesc.desc(), ddx,
                      args1.wdesc.desc(), w, args1.cdesc.desc(), fwd_algo1,
                      &beta, args1.odesc.desc(), transformed_ddy_channel,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
1239
#else
1240
        for (int i = 0; i < groups; i++) {
L
liym27 已提交
1241 1242
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1243 1244 1245 1246 1247 1248 1249 1250
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args1.idesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        fwd_algo1, workspace_ptr, workspace_size, &beta,
                        args1.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1251 1252 1253
              },
              workspace_size);
        }
1254
#endif
L
liym27 已提交
1255 1256
      }
      if (ddW) {
1257
#ifdef PADDLE_WITH_HIP
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        // MIOPEN ONLY support beta to be 0.0f
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args2.idesc.desc(), x, args2.wdesc.desc(),
                      ddw, args2.cdesc.desc(), fwd_algo2, &beta,
                      args2.odesc.desc(), transformed_ddy_channel,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
1269
#else
1270
        for (int i = 0; i < groups; i++) {
L
liym27 已提交
1271 1272
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1273 1274 1275 1276 1277 1278 1279 1280
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args2.idesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
                        fwd_algo2, workspace_ptr, workspace_size, &alpha,
                        args2.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1281 1282 1283
              },
              workspace_size);
        }
1284
#endif
L
liym27 已提交
1285 1286 1287 1288 1289 1290
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_ddO_channel, ddO);
      }
    }
L
lvmengsi 已提交
1291
    T* transformed_dy_channel = transformed_dO_channel.data<T>();
L
liym27 已提交
1292 1293
    if (dW && ddX) {
      ddx = transformed_ddX.data<T>();
1294
#ifdef PADDLE_WITH_HIP
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
      wkspace_handle.RunFunc(
          [&](void* workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenConvolutionBackwardWeights(
                    handle, &alpha, args3.odesc.desc(), transformed_dy_channel,
                    args3.idesc.desc(), ddx, args3.cdesc.desc(), filter_algo,
                    &beta, args3.wdesc.desc(), dw, workspace_ptr,
                    workspace_size));
          },
          workspace_size);
1305
#else
1306
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
1307 1308
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1309 1310 1311 1312 1313 1314 1315 1316
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args3.idesc.desc(),
                      ddx + i * group_offset_in, args3.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.cdesc.desc(), filter_algo, workspace_ptr,
                      workspace_size, &beta, args3.wdesc.desc(),
                      dw + i * group_offset_filter));
L
liym27 已提交
1317 1318 1319
            },
            workspace_size);
      }
1320
#endif
L
liym27 已提交
1321 1322 1323 1324
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
1325
#ifdef PADDLE_WITH_HIP
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
      wkspace_handle.RunFunc(
          [&](void* workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenConvolutionBackwardData(
                    handle, &alpha, args4.odesc.desc(), transformed_dy_channel,
                    args4.wdesc.desc(), ddw, args4.cdesc.desc(), data_algo,
                    &beta, args4.idesc.desc(), transformed_dx, workspace_ptr,
                    workspace_size));
          },
          workspace_size);
1336
#else
1337
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
1338 1339
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1340 1341 1342 1343 1344 1345 1346 1347
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args4.wdesc.desc(),
                      ddw + i * group_offset_filter, args4.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.cdesc.desc(), data_algo, workspace_ptr,
                      workspace_size, &beta, args4.idesc.desc(),
                      transformed_dx + i * group_offset_in));
L
liym27 已提交
1348 1349 1350
            },
            workspace_size);
      }
1351
#endif
L
liym27 已提交
1352

W
wangchaochaohu 已提交
1353 1354 1355 1356
      if (!is_sys_pad) {
        // reverse padded input
        std::vector<int> starts(X->dims().size(), 0);
        std::vector<int> axes(X->dims().size(), 0);
L
liym27 已提交
1357

W
wangchaochaohu 已提交
1358 1359 1360 1361 1362
        for (size_t i = 0; i < X->dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
        if (X->dims().size() == 4) {
1363
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
1364 1365
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        } else {
1366
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
1367 1368
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        }
L
liym27 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_dX_channel, dX);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
1394 1395 1396 1397 1398 1399 1400 1401
// ROCM has limit thread in depthwise_conv.cu and willl result in accuracy issue
// Use depthwise_conv2d in MIOPEN to resolve this issue
REGISTER_OP_KERNEL(depthwise_conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(depthwise_conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
#else
W
wuhuanzhou 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
#if CUDNN_VERSION_MIN(8, 1, 0)
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>,
                   paddle::operators::CUDNNConvOpKernel<plat::bfloat16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::bfloat16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::bfloat16>);

REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::bfloat16>);
#else
L
liym27 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

1456 1457 1458 1459 1460
REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
W
wuhuanzhou 已提交
1461
#endif
1462

L
liym27 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
1475
#endif