linear_chain_crf_op.h 16.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
C
caoying03 已提交
19 20 21 22

namespace paddle {
namespace operators {

C
caoying03 已提交
23
template <typename T>
C
caoying03 已提交
24
static inline T NormalizeL1(T* x, size_t len) {
C
caoying03 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37
  T sum = 0.;
  for (size_t i = 0; i < len; ++i) sum += x[i];
  // (This comment is from the old LinearChainCRFLayer.)
  // Right now, we just bet that sum won't be zero. If this really happens, we
  // will figure out what should be done then.
  PADDLE_ENFORCE(sum,
                 "The unnormalized probabilities of all possible unfinished "
                 "sequences must be greater than 0.");
  T s = 1. / sum;
  for (size_t i = 0; i < len; ++i) x[i] *= s;
  return sum;
}

38 39 40 41 42 43 44 45
template <typename T>
struct ScalarMul {
  explicit ScalarMul(const T& scalar) : scalar(scalar) {}
  T operator()(const T& val) const { return val * scalar; }

  T scalar;
};

C
caoying03 已提交
46 47
using framework::LoDTensor;
using framework::LoD;
48
using framework::Tensor;
C
caoying03 已提交
49 50 51 52
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
53
template <typename DeviceContext, typename T>
C
caoying03 已提交
54
class LinearChainCRFOpKernel : public framework::OpKernel<T> {
C
caoying03 已提交
55
 public:
C
caoying03 已提交
56
  void Compute(const framework::ExecutionContext& ctx) const override {
57 58 59
    const Tensor* emission_weights = ctx.Input<framework::Tensor>("Emission");
    const Tensor* transition_weights =
        ctx.Input<framework::Tensor>("Transition");
60 61 62 63 64

    Tensor* emission_exps = ctx.Output<Tensor>("EmissionExps");
    Tensor* transition_exps = ctx.Output<Tensor>("TransitionExps");
    Tensor* alpha = ctx.Output<Tensor>("Alpha");
    Tensor* ll = ctx.Output<Tensor>("LogLikelihood");
C
caoying03 已提交
65

66 67
    // Because the computation codes only runs on CPU, here the memory for all
    // the outputs is FIXED to be allocated on the CPU memory.
68 69
    emission_exps->mutable_data<T>(platform::CPUPlace());
    alpha->mutable_data<T>(platform::CPUPlace());
70
    transition_exps->mutable_data<T>(platform::CPUPlace());
71 72 73
    auto emission_dims = emission_weights->dims();

    const Tensor* label = ctx.Input<framework::Tensor>("Label");
74 75 76 77 78 79 80
    Tensor emission_weights_tmp = *emission_weights;
    Tensor label_tmp = *label;
    Tensor emission_exps_tmp = *emission_exps;
    Tensor alpha_tmp = *alpha;
    int64_t seq_num = 0;
    int64_t batch_size;
    int64_t tag_num;
81
    const int64_t* length_data = nullptr;
82 83 84
    framework::LoD in_lod;
    if (ctx.HasInput("Length")) {
      const Tensor* label_length = ctx.Input<framework::Tensor>("Length");
85 86 87 88 89
      length_data = label_length->data<int64_t>();
      seq_num = label_length->numel();
      PADDLE_ENFORCE_EQ(seq_num, emission_dims[0],
                        "the size of Input(length) must be equal to "
                        "emission_dims[0].");
90
      auto label_dims = label->dims();
91 92 93
      PADDLE_ENFORCE_EQ(seq_num, label_dims[0],
                        "the size of Input(length) must be equal to "
                        "label_dims[0].");
94 95 96 97 98 99 100 101 102

      batch_size = emission_dims[0] * emission_dims[1];
      tag_num = emission_dims[2];
      emission_weights_tmp.Resize({batch_size, tag_num});
      label_tmp.Resize({batch_size, 1});
      alpha_tmp.Resize({batch_size, tag_num});
      emission_exps_tmp.Resize({batch_size, tag_num});
      math::set_constant(ctx.device_context(), emission_exps, 0.0);
      math::set_constant(ctx.device_context(), alpha, 0.0);
103
    } else {
104 105 106
      in_lod = ctx.Input<LoDTensor>("Label")->lod();
      PADDLE_ENFORCE_NE(in_lod.size(), 0, "Input(Label) must be a sequence.");
      seq_num = in_lod[0].size() - 1;
107 108 109 110
      batch_size = emission_dims[0];
      tag_num = emission_dims[1];
    }

111 112
    // Resize the output tensor to its correct dimension.
    ll->Resize({seq_num, 1});
113 114
    ll->mutable_data<T>(platform::CPUPlace());
    // Now, all the inputs and outputs should be on the CPU memory.
C
caoying03 已提交
115 116
    Tensor emission_row_max;
    emission_row_max.mutable_data<T>(
C
Cao Ying 已提交
117
        framework::make_ddim({static_cast<int64_t>(batch_size), 1}),
118
        platform::CPUPlace());
Q
QI JUN 已提交
119 120
    auto& place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
121
    auto x = EigenMatrix<T>::From(emission_weights_tmp);
C
caoying03 已提交
122 123 124
    auto x_row_max = EigenMatrix<T>::From(emission_row_max);
    x_row_max.device(place) =
        x.maximum(Eigen::DSizes<int, 1>(1))
125
            .reshape(Eigen::DSizes<int, 2>(static_cast<int>(batch_size), 1));
126
    auto x_exps = EigenMatrix<T>::From(emission_exps_tmp);
C
caoying03 已提交
127 128 129 130 131
    x_exps.device(place) =
        (x - x_row_max.broadcast(Eigen::DSizes<int, 2>(1, tag_num))).exp();
    auto w = EigenMatrix<T>::From(*transition_weights);
    auto w_exps = EigenMatrix<T>::From(*transition_exps);
    w_exps.device(place) = w.exp();
132
    T* log_likelihood = ll->data<T>();
133 134 135 136
    for (int64_t i = 0; i < seq_num; ++i) {
      int64_t start_pos = 0;
      int64_t end_pos = 0;
      if (ctx.HasInput("Length")) {
137
        start_pos = i * emission_dims[1];
138
        end_pos = start_pos + length_data[i];
139
      } else {
140 141
        start_pos = static_cast<int64_t>(in_lod[0][i]);
        end_pos = static_cast<int64_t>(in_lod[0][i + 1]);
142
      }
C
caoying03 已提交
143 144 145 146 147
      if (end_pos == start_pos) {
        // If an empty input sequence is given, pad 0 for its cost.
        log_likelihood[i] = 0.;
        continue;
      }
148
      const Tensor one_seq = emission_weights_tmp.Slice(start_pos, end_pos);
C
caoying03 已提交
149
      Tensor one_seq_row_max = emission_row_max.Slice(start_pos, end_pos);
150 151 152
      Tensor one_seq_exps = emission_exps_tmp.Slice(start_pos, end_pos);
      const Tensor one_seq_label = label_tmp.Slice(start_pos, end_pos);
      Tensor one_seq_alpha = alpha_tmp.Slice(start_pos, end_pos);
C
caoying03 已提交
153 154 155 156
      log_likelihood[i] = ForwardOneSequence(
          one_seq, one_seq_row_max, one_seq_exps, *transition_weights,
          *transition_exps, one_seq_label, &one_seq_alpha);
    }
157 158 159
  };

 private:
C
caoying03 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  T ForwardOneSequence(const Tensor& emission, const Tensor& emission_row_max,
                       const Tensor& emission_exps, const Tensor& trans_weights,
                       const Tensor& trans_weight_exps, const Tensor& label,
                       Tensor* alpha) const {
    const T* x = emission.data<T>();
    const T* x_row_max = emission_row_max.data<T>();
    const T* x_exps = emission_exps.data<T>();
    const T* w = trans_weights.data<T>();
    const T* w_exps = trans_weight_exps.data<T>();
    T* alpha_value = alpha->data<T>();

    auto x_dims = emission.dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    // The 1st row of w are transition weights for start mask.
    // The 2nd row of w are transition weights for end mask.
    // Transition weights between other tags begin from the 3rd row of w.
    const size_t state_trans_base_idx = 2;

    for (size_t i = 0; i < tag_num; ++i) {
      alpha_value[i] = w_exps[i] * x_exps[i];
    }
    T ll = -x_row_max[0] - std::log(NormalizeL1<T>(alpha_value, tag_num));

    for (size_t k = 1; k < seq_length; ++k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
C
caoying03 已提交
188
          sum += alpha_value[(k - 1) * tag_num + j] *  // (*)
C
caoying03 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
                 w_exps[(j + state_trans_base_idx) * tag_num + i];
        }
        alpha_value[k * tag_num + i] = x_exps[k * tag_num + i] * sum;
      }
      // NormalizeL1 is to avoid underflow or overflow at (*).
      ll -= x_row_max[k] +
            std::log(NormalizeL1<T>(alpha_value + k * tag_num, tag_num));
    }
    T sum = 0.;
    for (size_t i = 0; i < tag_num; ++i) {
      sum += alpha_value[(seq_length - 1) * tag_num + i] * w_exps[tag_num + i];
    }
    ll -= std::log(sum);
    // Now ll is equal to -log(Z).

Q
Qiao Longfei 已提交
204
    const int64_t* lbl = label.data<int64_t>();
C
caoying03 已提交
205
    PADDLE_ENFORCE_LT(
C
Cao Ying 已提交
206
        static_cast<size_t>(*std::max_element(lbl, lbl + seq_length)), tag_num,
C
caoying03 已提交
207 208 209 210 211 212 213 214 215 216
        "An invalid tag label that execesses the largest tag number.");

    // Calculate the nominator part, which depends on the label sequence.
    ll += w[lbl[0]] /*start transition*/ + x[lbl[0]] +
          w[tag_num + lbl[seq_length - 1]] /*end transition*/;
    for (size_t k = 1; k < seq_length; ++k) {
      ll += x[k * tag_num + lbl[k]] +
            w[(lbl[k - 1] + state_trans_base_idx) * tag_num + lbl[k]];
    }
    return -ll;
C
caoying03 已提交
217
  }
C
caoying03 已提交
218 219
};

Q
QI JUN 已提交
220
template <typename DeviceContext, typename T>
C
caoying03 已提交
221
class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
C
caoying03 已提交
222
 public:
C
caoying03 已提交
223
  void Compute(const framework::ExecutionContext& ctx) const override {
224
    const Tensor* label = ctx.Input<Tensor>("Label");
225 226 227 228 229 230 231
    const Tensor* emission_exps = ctx.Input<Tensor>("EmissionExps");
    const Tensor* transition_exps = ctx.Input<Tensor>("TransitionExps");
    const Tensor* alpha = ctx.Input<Tensor>("Alpha");
    const T* ll_grad =
        ctx.Input<Tensor>(framework::GradVarName("LogLikelihood"))->data<T>();
    Tensor* emission_grad =
        ctx.Output<Tensor>(framework::GradVarName("Emission"));
232 233 234
    auto* emission_grad_data =
        emission_grad->mutable_data<T>(platform::CPUPlace());
    memset(emission_grad_data, 0, emission_grad->numel() * sizeof(T));
235 236 237 238
    Tensor alpha_tmp = *alpha;
    Tensor label_tmp = *label;
    Tensor emission_exps_tmp = *emission_exps;
    Tensor emission_grad_tmp = *emission_grad;
239
    // getting seq_num  using padding or not
240 241
    int64_t seq_num = 0;
    framework::LoD in_lod;
242
    const int64_t* length_data = nullptr;
243 244
    if (ctx.HasInput("Length")) {
      const Tensor* label_length = ctx.Input<framework::Tensor>("Length");
245 246 247 248 249 250
      length_data = label_length->data<int64_t>();
      seq_num = label_length->numel();
      auto emission_dims = emission_grad->dims();
      auto label_dims = label->dims();
      emission_grad_tmp.Resize(
          {emission_dims[0] * emission_dims[1], emission_dims[2]});
251
      label_tmp.Resize({label_dims[0] * label_dims[1], 1});
252 253 254 255
      alpha_tmp.Resize({emission_dims[0] * emission_dims[1], emission_dims[2]});
      emission_exps_tmp.Resize(
          {emission_dims[0] * emission_dims[1], emission_dims[2]});
    } else {
256 257 258
      in_lod = ctx.Input<LoDTensor>("Label")->lod();
      PADDLE_ENFORCE_NE(in_lod.size(), 0, "Input(Label) must be a sequence.");
      seq_num = static_cast<int64_t>(in_lod[0].size() - 1);
259 260
    }

261 262
    Tensor* transition_grad =
        ctx.Output<Tensor>(framework::GradVarName("Transition"));
C
caoying03 已提交
263 264 265

    // TODO(caoying) Fix this constraint. When the Input(Emission) is from the
    // data reader operator, it can have no gradients.
266 267
    if (transition_grad) {
      transition_grad->mutable_data<T>(platform::CPUPlace());
Q
QI JUN 已提交
268
      math::set_constant(ctx.device_context(), transition_grad, 0.);
C
caoying03 已提交
269
    }
270
    // Now, all the inputs and outputs should be on the CPU memory.
C
caoying03 已提交
271 272 273
    auto emission_dims = emission_exps->dims();
    // Beta is the memo table used in dynamic programming to calculate the
    // backwark vectors. For a backward vector i (the i-th row of beta), it
274 275
    // captures the unnormalized probabilities of partial sequences starting
    // at position i.
C
caoying03 已提交
276
    Tensor beta;
277 278
    beta.mutable_data<T>(emission_dims, platform::CPUPlace());
    if (ctx.HasInput("Length")) {
279 280
      beta.Resize({emission_dims[0] * emission_dims[1], emission_dims[2]});
    }
281 282 283 284 285

    for (int64_t i = 0; i < seq_num; ++i) {
      int64_t start_pos = 0;
      int64_t end_pos = 0;
      if (ctx.HasInput("Length")) {
286
        start_pos = i * emission_dims[1];
287
        end_pos = start_pos + length_data[i];
288
      } else {
289 290 291 292 293 294
        start_pos = static_cast<int64_t>(in_lod[0][i]);
        end_pos = static_cast<int64_t>(in_lod[0][i + 1]);
      }

      if (end_pos == start_pos) {
        continue;
295
      }
C
caoying03 已提交
296
      const Tensor one_seq_emission_exps =
297 298 299
          emission_exps_tmp.Slice(start_pos, end_pos);
      const Tensor one_seq_label = label_tmp.Slice(start_pos, end_pos);
      const Tensor one_seq_alpha = alpha_tmp.Slice(start_pos, end_pos);
C
caoying03 已提交
300
      Tensor one_seq_beta = beta.Slice(start_pos, end_pos);
301 302
      Tensor one_seq_emission_grad =
          emission_grad_tmp.Slice(start_pos, end_pos);
Q
QI JUN 已提交
303 304 305 306
      BackwardOneSequence(
          ctx.template device_context<platform::CPUDeviceContext>(), ll_grad[i],
          one_seq_emission_exps, *transition_exps, one_seq_alpha, one_seq_label,
          &one_seq_beta, transition_grad, &one_seq_emission_grad);
307
    }
C
caoying03 已提交
308
  };
C
caoying03 已提交
309

310
 private:
Q
QI JUN 已提交
311 312
  void BackwardOneSequence(const platform::CPUDeviceContext& ctx,
                           const T ll_grad, const Tensor& emission_exps,
C
caoying03 已提交
313 314
                           const Tensor& transition_exps, const Tensor& alpha,
                           const Tensor& label, Tensor* beta,
C
caoying03 已提交
315
                           Tensor* transition_grad,
C
caoying03 已提交
316 317 318
                           Tensor* emission_grad) const {
    const T* w_exps = transition_exps.data<T>();
    const T* x_exps = emission_exps.data<T>();
Q
Qiao Longfei 已提交
319
    const int64_t* label_value = label.data<int64_t>();
C
caoying03 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    T* beta_value = beta->data<T>();
    auto x_dims = emission_exps.dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    const size_t state_trans_base_idx = 2;

    // Calculate the backward vectors: beta.
    // First, calculate the initialition state.
    for (size_t i = 0; i < tag_num; ++i) {
      beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i];
    }
    NormalizeL1<T>(beta_value + (seq_length - 1) * tag_num, tag_num);
    for (int k = static_cast<int>(seq_length) - 2; k >= 0; --k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
C
caoying03 已提交
336
          sum += w_exps[(i + state_trans_base_idx) * tag_num + j] *  // (**)
C
caoying03 已提交
337 338 339 340 341 342 343 344 345
                 x_exps[(k + 1) * tag_num + j] *
                 beta_value[(k + 1) * tag_num + j];
        }
        beta_value[k * tag_num + i] = sum;
      }
      // NormalizeL1 is to avoid underflow or overflow at (**).
      NormalizeL1<T>(beta_value + k * tag_num, tag_num);
    }

346
    auto x_grad_mat = EigenMatrix<T>::From(*emission_grad);
C
caoying03 已提交
347 348
    auto alpha_mat = EigenMatrix<T>::From(alpha);
    auto beta_mat = EigenMatrix<T>::From(*beta);
349

Q
QI JUN 已提交
350
    auto* place = ctx.eigen_device();
C
caoying03 已提交
351 352 353 354
    auto prob = alpha_mat * beta_mat;
    auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
                       .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                       .broadcast(Eigen::DSizes<int, 2>(1, tag_num));
355 356
    x_grad_mat.device(*place) =
        (prob / row_sum).unaryExpr(ScalarMul<T>(ll_grad));
C
caoying03 已提交
357 358

    for (size_t k = 0; k < seq_length; ++k) {
359
      x_grad_mat(k, label_value[k]) -= static_cast<T>(ll_grad);
C
caoying03 已提交
360 361 362 363 364
    }

    if (transition_grad) {
      T* trans_grad = transition_grad->data<T>();
      for (size_t k = 0; k < tag_num; ++k) {
365 366
        // Do not multiply by the output gradient here, because x_grad_mat has
        // alrealy done this.
C
caoying03 已提交
367 368 369 370 371 372 373
        trans_grad[k] += x_grad_mat(/*from start state*/ 0, k);
        trans_grad[tag_num + k] +=
            x_grad_mat(/*to end state*/ seq_length - 1, k);
      }

      auto x_exps_mat = EigenMatrix<T>::From(emission_exps);

374 375
      // TODO(caoying): Fix this to avoid using this local variable if we can
      // profile the training process.
C
caoying03 已提交
376
      Tensor tmp;
377
      tmp.mutable_data<T>(beta->dims(), platform::CPUPlace());
C
caoying03 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
      auto tmp_mat = EigenMatrix<T>::From(tmp);
      auto prob = beta_mat * x_exps_mat;
      auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
                         .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                         .broadcast(Eigen::DSizes<int, 2>(1, tag_num));
      tmp_mat.device(*place) = prob / row_sum;

      for (size_t k = 1; k < seq_length; ++k) {
        T sum = 0.;
        for (size_t i = 0; i < tag_num; ++i) {
          for (size_t j = 0; j < tag_num; ++j) {
            sum += w_exps[(i + state_trans_base_idx) * tag_num + j] *  // (**)
                   alpha_mat(k - 1, i) * tmp_mat(k, j);
          }
        }
        sum = 1. / sum;
        for (size_t i = 0; i < tag_num; ++i) {
          for (size_t j = 0; j < tag_num; ++j) {
            trans_grad[(i + state_trans_base_idx) * tag_num + j] +=
                sum * w_exps[(i + state_trans_base_idx) * tag_num + j] *
398
                alpha_mat(k - 1, i) * tmp_mat(k, j) * ll_grad;
C
caoying03 已提交
399 400 401
          }
        }
        trans_grad[(label_value[k - 1] + state_trans_base_idx) * tag_num +
402
                   label_value[k]] -= static_cast<T>(ll_grad);
C
caoying03 已提交
403 404
      }
    }
C
caoying03 已提交
405
  }
C
caoying03 已提交
406 407 408 409
};

}  // namespace operators
}  // namespace paddle