expand_op.h 8.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
yangyaming 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
yangyaming 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
yangyaming 已提交
14 15 16

#pragma once

17 18
#include <vector>

Y
yangyaming 已提交
19 20 21 22 23 24
#include <boost/preprocessor/arithmetic/div.hpp>
#include <boost/preprocessor/arithmetic/mod.hpp>
#include <boost/preprocessor/comparison/greater.hpp>
#include <boost/preprocessor/comparison/greater_equal.hpp>
#include <boost/preprocessor/control/if.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
yangyaming 已提交
28

29 30
#define MAX_RANK_SUPPORTED 6

Y
yangyaming 已提交
31 32 33 34 35 36
#define EXPAND_TEMPLATE(z, n, data) \
  case n + 1: {                     \
    Expand<n + 1>(context);         \
    break;                          \
  }
#define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~)
37 38 39
#define COND(n)                                               \
  BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, MAX_RANK_SUPPORTED), \
                         BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
Y
yangyaming 已提交
40 41 42 43 44
#define EXPAND_GRAD_CASE(n)                                        \
  case n: {                                                        \
    ExpandBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
    break;                                                         \
  }
Y
yangyaming 已提交
45
#define EXPAND_GRAD_TEMPLATE(z, n, data) \
Y
yangyaming 已提交
46
  BOOST_PP_IF(COND(n), EXPAND_GRAD_CASE(n), )
Y
yangyaming 已提交
47
#define REP_EXPAND_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_GRAD_TEMPLATE, ~)
Y
yangyaming 已提交
48 49 50

namespace paddle {
namespace operators {
51 52
inline std::vector<int> get_expand_times(
    const framework::ExecutionContext& ctx) {
L
liym27 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65
  if (ctx.HasInput("ExpandTimes")) {
    auto* expand_tensor = ctx.Input<framework::LoDTensor>("ExpandTimes");
    auto* expand_data = expand_tensor->data<int>();
    framework::Tensor cpu_expand_tensor;
    if (platform::is_gpu_place(expand_tensor->place())) {
      TensorCopySync(*expand_tensor, platform::CPUPlace(), &cpu_expand_tensor);
      expand_data = cpu_expand_tensor.data<int>();
    }
    auto vec_epxand_times =
        std::vector<int>(expand_data, expand_data + expand_tensor->numel());
    return vec_epxand_times;
  }

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  auto list_expand_times_tensor =
      ctx.MultiInput<framework::Tensor>("expand_times_tensor");
  if (list_expand_times_tensor.size() > 0) {
    // get tensor from
    std::vector<int> vec_epxand_times;
    for (size_t i = 0; i < list_expand_times_tensor.size(); ++i) {
      auto tensor = list_expand_times_tensor[i];
      if (platform::is_gpu_place(tensor->place())) {
        framework::Tensor temp;
        TensorCopySync(*tensor, platform::CPUPlace(), &temp);
        vec_epxand_times.push_back(*temp.data<int32_t>());
      } else {
        vec_epxand_times.push_back(*tensor->data<int32_t>());
      }
    }

    return vec_epxand_times;
  } else {
    return ctx.Attr<std::vector<int>>("expand_times");
  }
}
Y
yangyaming 已提交
87

Y
yangyaming 已提交
88
using Tensor = framework::Tensor;
Y
yangyaming 已提交
89 90 91 92 93 94 95
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

Q
QI JUN 已提交
96
template <typename DeviceContext, typename T>
Y
yangyaming 已提交
97
class ExpandKernel : public framework::OpKernel<T> {
Y
yangyaming 已提交
98 99
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
yangyaming 已提交
100
    auto rank = context.Input<Tensor>("X")->dims().size();
Y
yangyaming 已提交
101
    switch (rank) {
102
      REP_EXPAND_TEMPLATE(MAX_RANK_SUPPORTED)
Y
yangyaming 已提交
103
      default:
Y
yangyaming 已提交
104 105
        PADDLE_ENFORCE(false,
                       "Only support tensor with rank being between 1 and 6.");
Y
yangyaming 已提交
106
    }
Y
yangyaming 已提交
107 108 109 110 111
  }

 protected:
  template <int Rank>
  void Expand(const framework::ExecutionContext& context) const {
Y
yangyaming 已提交
112
    auto* in0 = context.Input<Tensor>("X");
113 114 115

    auto in_dims = in0->dims();
    auto expand_times = get_expand_times(context);
L
liym27 已提交
116 117 118
    PADDLE_ENFORCE_EQ(static_cast<size_t>(in_dims.size()), expand_times.size(),
                      "The number of Attr(expand_times)'s value must be equal "
                      "to the rank of Input(X).");
Y
yangyaming 已提交
119
    auto* out0 = context.Output<Tensor>("Out");
Y
yangyaming 已提交
120 121 122 123
    Eigen::DSizes<int, Rank> bcast_dims;
    for (size_t i = 0; i < expand_times.size(); ++i) {
      bcast_dims[i] = expand_times[i];
    }
124 125 126 127 128 129 130

    framework::DDim out_dims(in_dims);
    for (size_t i = 0; i < expand_times.size(); ++i) {
      out_dims[i] *= expand_times[i];
    }

    out0->Resize(out_dims);
Y
yangyaming 已提交
131 132 133
    auto x = EigenTensor<T, Rank>::From(*in0);
    out0->mutable_data<T>(context.GetPlace());
    auto y = EigenTensor<T, Rank>::From(*out0);
Q
QI JUN 已提交
134 135
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
Y
yangyaming 已提交
136 137 138 139
    y.device(place) = x.broadcast(bcast_dims);
  }
};

Q
QI JUN 已提交
140
template <typename DeviceContext, typename T>
Y
yangyaming 已提交
141
class ExpandGradKernel : public framework::OpKernel<T> {
Y
yangyaming 已提交
142 143
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
yangyaming 已提交
144
    auto* in0 = context.Input<Tensor>("X");
145 146
    // auto& expand_times = context.Attr<std::vector<int>>("expand_times");
    auto expand_times = get_expand_times(context);
Y
yangyaming 已提交
147
    auto x_dims = in0->dims();
148 149 150 151 152 153
    // 1. reshape_dims_vec is the broadcast parameter. For each dimension i,
    //    if expand_times[i] > 1 and x_dims[i] > 1, i will be splitted to two
    //    dimensions [expand_times[i], x_dims[i]].
    // 2. reduce_dims_vec is the dimension parameter to compute gradients. For
    //    each dimension expanded, the gradients should be summed to original
    //    size.
Y
yangyaming 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    std::vector<int> reshape_dims_vec;
    std::vector<int> reduce_dims_vec;
    for (size_t i = 0; i < expand_times.size(); ++i) {
      if (expand_times[i] == 1) {
        reshape_dims_vec.push_back(x_dims[i]);
      } else {
        if (x_dims[i] == 1) {
          reduce_dims_vec.push_back(reshape_dims_vec.size());
          reshape_dims_vec.push_back(expand_times[i]);
        } else {
          reduce_dims_vec.push_back(reshape_dims_vec.size());
          reshape_dims_vec.push_back(expand_times[i]);
          reshape_dims_vec.push_back(x_dims[i]);
        }
      }
    }

171 172
    int dims = reshape_dims_vec.size() * MAX_RANK_SUPPORTED +
               reduce_dims_vec.size() - MAX_RANK_SUPPORTED - 1;
Y
yangyaming 已提交
173 174
    // no need reduce, just copy
    if (reduce_dims_vec.size() == 0) {
Y
yangyaming 已提交
175 176
      auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
      auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
Y
yangyaming 已提交
177
      out0->mutable_data<T>(context.GetPlace());
Y
Yi Wang 已提交
178 179
      framework::TensorCopy(*in0, context.GetPlace(), context.device_context(),
                            out0);
Y
yangyaming 已提交
180 181 182 183
    } else {
      switch (dims) {
        REP_EXPAND_GRAD_TEMPLATE(72)
        default:
Y
yangyaming 已提交
184 185
          PADDLE_ENFORCE(
              false, "Only support tensor with rank being between 1 and 6.");
Y
yangyaming 已提交
186
      }
Y
yangyaming 已提交
187
    }
Y
yangyaming 已提交
188 189 190 191 192 193 194
  }

 protected:
  template <int Dims>
  void ExpandBackward(const framework::ExecutionContext& context,
                      const std::vector<int>& reshape_dims_vec,
                      const std::vector<int>& reduce_dims_vec) const {
195 196
    size_t reshape_size = Dims / MAX_RANK_SUPPORTED + 1;
    size_t reduce_size = Dims % MAX_RANK_SUPPORTED + 1;
Y
yangyaming 已提交
197
    PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(),
Y
yangyaming 已提交
198
                      "Inconsistent size between template Dims and "
Y
yangyaming 已提交
199 200
                      "reshape dimensions.");
    PADDLE_ENFORCE_EQ(reduce_size, reduce_dims_vec.size(),
Y
yangyaming 已提交
201
                      "Inconsistent size between template Dims and "
Y
yangyaming 已提交
202
                      "reduce dimensions.");
Y
yangyaming 已提交
203 204
    auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
Y
yangyaming 已提交
205 206
    out0->mutable_data<T>(context.GetPlace());
    auto x_grad = EigenVector<T>::Flatten(*out0);
207
    Eigen::DSizes<int, Dims / MAX_RANK_SUPPORTED + 1> reshape_dims;
Y
yangyaming 已提交
208 209 210
    for (size_t i = 0; i < reshape_size; ++i) {
      reshape_dims[i] = reshape_dims_vec[i];
    }
211
    Eigen::DSizes<int, Dims % MAX_RANK_SUPPORTED + 1> reduce_dims;
Y
yangyaming 已提交
212 213 214 215
    for (size_t i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = reduce_dims_vec[i];
    }
    auto out_grad = EigenVector<T>::Flatten(*in0);
Q
QI JUN 已提交
216 217
    x_grad.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
218 219 220
        out_grad.reshape(reshape_dims)
            .sum(reduce_dims)
            .reshape(x_grad.dimensions());
Y
yangyaming 已提交
221 222 223
  }
};

Y
yangyaming 已提交
224 225
}  // namespace operators
}  // namespace paddle