test_dynrnn_gradient_check.py 12.4 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yang Yu 已提交
15 16 17 18 19
import numpy
import random
import collections
import paddle.v2.fluid as fluid
import unittest
Y
Yang Yu 已提交
20
from decorators import *
Y
Yang Yu 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94


class Memory(object):
    def __init__(self, shape, dtype='float32'):
        self.ex = numpy.zeros(shape=shape, dtype=dtype)
        self.cur = None

    def update(self, val):
        assert val.shape == self.ex.shape
        assert val.dtype == self.ex.dtype
        self.cur = val

    def ex(self):
        return self.ex

    def next(self):
        self.ex = self.cur
        self.cur = None

    def __next__(self):
        self.next()

    def reset(self):
        self.ex = numpy.zeros(shape=self.ex.shape, dtype=self.ex.dtype)
        self.cur = None


class Output(object):
    def __init__(self):
        self.outs = []

    def next_sequence(self):
        self.outs.append([])

    def out(self, val):
        self.outs[-1].append(val)

    def last(self):
        return self.outs[-1][-1]


class BaseRNN(object):
    def __init__(self, ins, mems, params, outs, num_seq=5, max_seq_len=15):
        self.num_seq = num_seq
        self.inputs = collections.defaultdict(list)

        for _ in xrange(num_seq):
            seq_len = random.randint(1, max_seq_len - 1)
            for iname in ins:
                ishape = ins[iname].get('shape', None)
                idtype = ins[iname].get('dtype', 'float32')
                lst = []
                for _ in xrange(seq_len):
                    lst.append(numpy.random.random(size=ishape).astype(idtype))
                self.inputs[iname].append(lst)

        self.mems = dict()
        for mname in mems:
            mshape = mems[mname].get('shape', None)
            mdtype = mems[mname].get('dtype', 'float32')
            self.mems[mname] = Memory(shape=mshape, dtype=mdtype)

        self.params = dict()
        for pname in params:
            pshape = params[pname].get('shape', None)
            pdtype = params[pname].get('dtype', 'float32')
            self.params[pname] = numpy.random.random(size=pshape).astype(pdtype)

        self.outputs = dict()

        for oname in outs:
            self.outputs[oname] = Output()

    def step(self, **kwargs):
Y
Yang Yu 已提交
95
        raise NotImplementedError()
Y
Yang Yu 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    def exe(self):
        retv = dict()
        for out in self.outputs:
            retv[out] = []

        for seq_id in xrange(self.num_seq):
            for mname in self.mems:
                self.mems[mname].reset()
            for out in self.outputs:
                self.outputs[out].next_sequence()

            iname0 = self.inputs.keys()[0]
            seq_len = len(self.inputs[iname0][seq_id])

            for step_id in xrange(seq_len):
                xargs = dict()

                for iname in self.inputs:
                    xargs[iname] = self.inputs[iname][seq_id][step_id]

                for mname in self.mems:
                    xargs[mname] = self.mems[mname]

                for pname in self.params:
                    xargs[pname] = self.params[pname]

                for out in self.outputs:
                    xargs[out] = self.outputs[out]

                self.step(**xargs)

                for mname in self.mems:
                    next(self.mems[mname])

            for out in self.outputs:
                retv[out].append(self.outputs[out].last())

        for out in retv:
            retv[out] = numpy.array(retv[out])
        return retv

    def to_feed(self, place):
        feed_dict = dict()

        for iname in self.inputs:
            lod = [0]
            np_flatten = []
            for seq_id in xrange(len(self.inputs[iname])):
                seq_len = len(self.inputs[iname][seq_id])
                lod.append(lod[-1] + seq_len)
                np_flatten.extend(self.inputs[iname][seq_id])

            t = fluid.Tensor()
            t.set(numpy.array(np_flatten), place)
            t.set_lod([lod])
            feed_dict[iname] = t

        for pname in self.params:
            feed_dict[pname] = self.params[pname]
        return feed_dict

Y
Yang Yu 已提交
158
    def get_numeric_gradient_of_param(self, param_name, delta=0.001):
Y
Yang Yu 已提交
159
        p = self.params[param_name]
Y
Yang Yu 已提交
160 161 162
        if len(p.shape) != 2:
            raise ValueError("Not support get numeric gradient of an parameter,"
                             " which is not matrix")
Y
Yang Yu 已提交
163 164
        g = numpy.zeros(shape=p.shape, dtype=p.dtype)

Y
Yang Yu 已提交
165 166 167 168 169 170 171 172 173
        for i in xrange(p.shape[0]):
            for j in xrange(p.shape[1]):
                o = p[i][j]
                p[i][j] += delta
                pos = self._exe_mean_out_()
                p[i][j] -= 2 * delta
                neg = self._exe_mean_out_()
                p[i][j] = o
                g[i][j] = (pos - neg) / (delta * 2)
Y
Yang Yu 已提交
174 175
        return g

Y
Stash  
Yang Yu 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    def get_numeric_gradient_of_input(self,
                                      input_name,
                                      delta=0.001,
                                      return_one_tensor=True):
        ipt = self.inputs[input_name]
        grad = []

        for seq in ipt:
            seq_grad = []
            for item in seq:
                item_grad = numpy.zeros(shape=item.shape, dtype=item.dtype)
                if len(item.shape) != 1:
                    raise ValueError("Not support")

                for i in xrange(len(item)):
                    o = item[i]
                    item[i] += delta
                    pos = self._exe_mean_out_()
                    item[i] -= 2 * delta
                    neg = self._exe_mean_out_()
                    item[i] = o
                    item_grad[i] = (pos - neg) / (delta * 2)
                seq_grad.append(item_grad)
            grad.append(seq_grad)

        if not return_one_tensor:
            return grad

        for i in xrange(len(grad)):
            grad[i] = numpy.concatenate(grad[i])
        grad = numpy.concatenate(grad)
        return grad

Y
Yang Yu 已提交
209 210 211 212 213
    def _exe_mean_out_(self):
        outs = self.exe()
        return numpy.array([o.mean() for o in outs.itervalues()]).mean()


214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
class SeedFixedTestCase(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        """Fix random seeds to remove randomness from tests"""
        cls._np_rand_state = numpy.random.get_state()
        cls._py_rand_state = random.getstate()

        numpy.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""
        numpy.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)


class TestSimpleMul(SeedFixedTestCase):
Y
Yang Yu 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    DATA_NAME = 'X'
    DATA_WIDTH = 32
    PARAM_NAME = 'W'
    HIDDEN_WIDTH = 10
    OUT_NAME = 'Out'

    class SimpleMul(BaseRNN):
        def __init__(self):
            base = TestSimpleMul
            super(base.SimpleMul, self).__init__({
                base.DATA_NAME: {
                    'shape': [base.DATA_WIDTH]
                }
            }, {}, {
                base.PARAM_NAME: {
                    'shape': [base.DATA_WIDTH, base.HIDDEN_WIDTH]
                }
            }, [base.OUT_NAME])

        def step(self, X, W, Out):
            Out.out(numpy.matmul(X, W))

Y
Yang Yu 已提交
254 255 256 257
    # Test many times in local to ensure the random seed cannot breaks CI
    # @many_times(10)
    @prog_scope()
    def test_forward_backward(self):
Y
Stash  
Yang Yu 已提交
258
        py_rnn = TestSimpleMul.SimpleMul()
Y
Yang Yu 已提交
259 260
        dat = fluid.layers.data(
            name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1)
Y
Stash  
Yang Yu 已提交
261
        dat.stop_gradient = False
Y
Yang Yu 已提交
262 263 264 265 266

        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            d = rnn.step_input(dat)
            o = fluid.layers.fc(input=d,
Y
Yang Yu 已提交
267
                                param_attr=self.PARAM_NAME,
Y
Yang Yu 已提交
268
                                bias_attr=False,
Y
Yang Yu 已提交
269
                                size=self.HIDDEN_WIDTH,
Y
Yang Yu 已提交
270 271 272 273 274 275
                                act=None)
            rnn.output(o)

        out = rnn()
        out = fluid.layers.sequence_pool(out, pool_type='last')
        loss = fluid.layers.mean(x=out)
Y
Update  
Yang Yu 已提交
276
        fluid.backward.append_backward(loss)
Y
Yang Yu 已提交
277 278 279

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
Y
Stash  
Yang Yu 已提交
280 281 282 283 284 285 286 287
        out, w_g, i_g = map(numpy.array,
                            exe.run(feed=py_rnn.to_feed(cpu),
                                    fetch_list=[
                                        out, self.PARAM_NAME + "@GRAD",
                                        self.DATA_NAME + "@GRAD"
                                    ],
                                    return_numpy=False))
        out_by_python = py_rnn.exe()[self.OUT_NAME]
Y
Yang Yu 已提交
288
        self.assertTrue(numpy.allclose(out, out_by_python))
Y
Stash  
Yang Yu 已提交
289
        w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
Y
Yang Yu 已提交
290
        self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.05))
Y
Stash  
Yang Yu 已提交
291 292 293 294
        i_g_num = py_rnn.get_numeric_gradient_of_input(
            input_name=self.DATA_NAME)
        i_g_num = i_g_num.reshape(i_g.shape)
        self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.05))
Y
Yang Yu 已提交
295 296


297
class TestSimpleMulWithMemory(SeedFixedTestCase):
Y
Yang Yu 已提交
298
    DATA_WIDTH = 32
Y
Stash  
Yang Yu 已提交
299
    HIDDEN_WIDTH = 20
Y
Yang Yu 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    DATA_NAME = 'X'
    PARAM_NAME = 'W'

    class SimpleMulWithMemory(BaseRNN):
        def __init__(self):
            super(TestSimpleMulWithMemory.SimpleMulWithMemory, self).__init__({
                TestSimpleMulWithMemory.DATA_NAME: {
                    'shape': [TestSimpleMulWithMemory.DATA_WIDTH]
                }
            }, {'Mem': {
                'shape': [TestSimpleMulWithMemory.HIDDEN_WIDTH]
            }}, {
                TestSimpleMulWithMemory.PARAM_NAME: {
                    'shape': [
                        TestSimpleMulWithMemory.DATA_WIDTH,
                        TestSimpleMulWithMemory.HIDDEN_WIDTH
                    ]
                }
            }, ['Out'])

        def step(self, X, Mem, W, Out):
            o = numpy.matmul(X, W)
            assert isinstance(Mem, Memory)
            o += Mem.ex
            Mem.update(o)
            assert isinstance(Out, Output)
            Out.out(o)

Y
Yang Yu 已提交
328 329
    # many_times used locally for debug. Make sure the calculation is stable.
    # @many_times(10)
Y
Yang Yu 已提交
330 331 332 333 334
    @prog_scope()
    def test_forward_backward(self):
        py_rnn = TestSimpleMulWithMemory.SimpleMulWithMemory()
        data = fluid.layers.data(
            name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1)
Y
Stash  
Yang Yu 已提交
335
        data.stop_gradient = False
Y
Yang Yu 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            d = rnn.step_input(data)
            mem = rnn.memory(value=0.0, shape=[self.HIDDEN_WIDTH])
            hidden = fluid.layers.fc(input=d,
                                     size=self.HIDDEN_WIDTH,
                                     param_attr=self.PARAM_NAME,
                                     bias_attr=False,
                                     act=None)
            o = fluid.layers.elementwise_add(x=hidden, y=mem)
            rnn.update_memory(mem, o)
            rnn.output(o)

        out = rnn()
        last = fluid.layers.sequence_pool(input=out, pool_type='last')
Y
Stash  
Yang Yu 已提交
351
        loss = fluid.layers.mean(x=last)
Y
Update  
Yang Yu 已提交
352
        fluid.backward.append_backward(loss)
Y
Yang Yu 已提交
353 354 355

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
Y
Stash  
Yang Yu 已提交
356
        feed = py_rnn.to_feed(cpu)
Y
Yang Yu 已提交
357 358 359 360 361 362 363
        last_np, w_g, i_g = map(numpy.array,
                                exe.run(feed=feed,
                                        fetch_list=[
                                            last, self.PARAM_NAME + "@GRAD",
                                            self.DATA_NAME + "@GRAD"
                                        ],
                                        return_numpy=False))
Y
Yang Yu 已提交
364
        last_by_py, = py_rnn.exe().values()
Y
Stash  
Yang Yu 已提交
365
        w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
Y
Yang Yu 已提交
366
        self.assertTrue(numpy.allclose(last_np, last_by_py))
Y
Yang Yu 已提交
367

Y
Stash  
Yang Yu 已提交
368 369 370 371 372 373 374
        self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.1))
        i_g_num = py_rnn.get_numeric_gradient_of_input(self.DATA_NAME)
        i_g_num = i_g_num.reshape(i_g.shape)

        # Since this RNN has many float add. The number could be not stable.
        # rtol = 0.1
        self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.1))
Y
Yang Yu 已提交
375 376


Y
Yang Yu 已提交
377 378
if __name__ == '__main__':
    unittest.main()