test_conv2d_op.py 34.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
D
dzhwinter 已提交
19

20
import paddle
21
import paddle.fluid.core as core
L
liym27 已提交
22
import paddle.fluid as fluid
A
Adam Osewski 已提交
23 24
from paddle.fluid.tests.unittests.op_test import (
    OpTest, convert_float_to_uint16, get_numeric_gradient)
W
wuhuanzhou 已提交
25
from paddle.fluid.tests.unittests.testsuite import create_op
26
from paddle.fluid import Program, program_guard
27 28


L
liym27 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
def conv2d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format='NCHW'):
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCHW' or 'NHWC'." % str(data_format))

    channel_last = (data_format == "NHWC")
    if channel_last:
        input = np.transpose(input, [0, 3, 1, 2])

C
chengduoZH 已提交
48
    in_n, in_c, in_h, in_w = input.shape
L
liym27 已提交
49 50 51
    f_n, f_c, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
C
chengduoZH 已提交
52 53
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
54
    sub_out_c = out_c // group
L
liym27 已提交
55
    sub_f_n = f_n // group
C
chengduoZH 已提交
56

C
chengduoZH 已提交
57 58
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']
L
liym27 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1]
79
        input_data_shape = input.shape[2:4]
L
liym27 已提交
80 81 82 83 84 85 86 87 88 89 90 91
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] *
                                             (f_h - 1) + 1)) // stride[0]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] *
                                             (f_w - 1) + 1)) // stride[1]
    out = np.zeros((out_n, out_c, out_h, out_w))
C
chengduoZH 已提交
92

武毅 已提交
93 94
    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)
C
chengduoZH 已提交
95

L
liym27 已提交
96 97
    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1),
                               (pad_w_0, pad_w_1)),
C
chengduoZH 已提交
98 99
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
100

L
liym27 已提交
101
    filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w))
C
chengduoZH 已提交
102 103 104
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

C
chengduoZH 已提交
105 106 107
    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
C
chengduoZH 已提交
108 109
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
110 111
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]
C
chengduoZH 已提交
112

L
liym27 已提交
113 114
                f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :]
                # sub_f_n == sub_out_c
C
chengduoZH 已提交
115
                for k in range(sub_out_c):
L
liym27 已提交
116
                    # Multiplication of Corresponding Elements, then sum all
C
chengduoZH 已提交
117 118 119
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))
C
chengduoZH 已提交
120

L
liym27 已提交
121 122 123
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 1])

124
    return out, in_n, out_h, out_w, out_c
C
chengduoZH 已提交
125 126


L
liym27 已提交
127 128 129 130 131 132
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
133 134
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_cudnn_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConv2DCUDNNFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
159
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
L
liym27 已提交
160 161 162 163 164

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
165
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
L
liym27 已提交
166 167 168 169 170 171

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
    TestConv2DCUDNNFp16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNFp16


W
wuhuanzhou 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
def create_test_cudnn_bf16_class(parent):
    @unittest.skipIf(
        not core.is_compiled_with_cuda() or core.cudnn_version() < 8100,
        "core is not compiled with CUDA and cudnn version need larger than 8.1.0"
    )
    class TestConv2DCUDNNBF16(parent):
        def get_numeric_grad(self, place, check_name):
            scope = core.Scope()
            self._check_grad_helper()
            op = create_op(scope, self.op_type, self.inputs, self.outputs,
                           self.attrs)
            return get_numeric_gradient(place, scope, op, self.inputs_fp32,
                                        check_name, ['Output'])

        def init_kernel_type(self):
            self.use_cudnn = True
            self.no_need_check_grad = True
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'Input')
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                no_grad_set=set(['Filter']),
                user_defined_grads=[numeric_grads])

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'Filter')
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                no_grad_set=set(['Input']),
                user_defined_grads=[numeric_grads])

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNBF16")
    TestConv2DCUDNNBF16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNBF16


L
liym27 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
238 239
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
def create_test_cudnn_channel_last_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
271
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
272 273 274 275 276

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
277
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
278 279 280 281 282 283 284 285 286 287 288 289 290

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLastFp16")
    TestCudnnChannelLastFp16.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastFp16


L
liym27 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
319 320
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
337 338
            self.dtype = np.float32 if core.is_compiled_with_rocm(
            ) else np.float64
L
liym27 已提交
339 340 341 342 343 344 345 346 347 348

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


C
cnn 已提交
349
class TestConv2DOp(OpTest):
350
    def setUp(self):
K
Kexin Zhao 已提交
351
        self.op_type = "conv2d"
352
        self.use_cudnn = False
353
        self.exhaustive_search = False
354
        self.use_cuda = False
355
        self.use_mkldnn = False
356
        self.fuse_relu_before_depthwise_conv = False
357
        self.data_format = "AnyLayout"
358
        self.dtype = np.float64
K
Kexin Zhao 已提交
359
        self.init_kernel_type()
C
chengduoZH 已提交
360
        self.init_group()
C
chengduoZH 已提交
361
        self.init_dilation()
C
chengduoZH 已提交
362
        self.init_test_case()
C
chengduoZH 已提交
363

C
chengduoZH 已提交
364 365 366 367 368
        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }
369

W
wuhuanzhou 已提交
370 371 372 373 374 375 376 377 378
        if self.is_bfloat16_op():
            input = np.random.random(self.input_size).astype(np.float32)
            filter = np.random.uniform(-1, 1,
                                       self.filter_size).astype(np.float32)
        else:
            input = np.random.random(self.input_size).astype(self.dtype)
            filter = np.random.uniform(-1, 1,
                                       self.filter_size).astype(self.dtype)

G
guomingz 已提交
379
        if not self.has_cuda():
380 381 382 383 384 385 386 387
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
L
liym27 已提交
388

389
        output, _, _, _, _ = conv2d_forward_naive(input2, filter, self.groups,
390
                                                  conv2d_param)
K
Kexin Zhao 已提交
391

W
wuhuanzhou 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
        if self.is_bfloat16_op():
            output = output.astype(np.float32)
            self.inputs = {
                'Input': convert_float_to_uint16(input),
                'Filter': convert_float_to_uint16(filter)
            }
            self.inputs_fp32 = {
                'Input': OpTest.np_dtype_to_fluid_dtype(input),
                'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
            }
        else:
            output = output.astype(self.dtype)
            self.inputs = {
                'Input': OpTest.np_dtype_to_fluid_dtype(input),
                'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
            }

H
hedaoyuan 已提交
409
        self.attrs = {
C
chengduoZH 已提交
410 411
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
412
            'groups': self.groups,
413
            'dilations': self.dilations,
414
            'use_cudnn': self.use_cudnn,
415
            'use_mkldnn': self.use_mkldnn,
416
            'data_format': self.data_format,
417 418
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
419
            'exhaustive_search': self.exhaustive_search
H
hedaoyuan 已提交
420
        }
421 422
        self.outputs = {'Output': output}

G
guomingz 已提交
423
    def has_cuda(self):
424 425
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)
426

H
hedaoyuan 已提交
427
    def test_check_output(self):
G
guomingz 已提交
428
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
429 430 431
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
432

H
hedaoyuan 已提交
433
    def test_check_grad(self):
434 435
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
436
            return
G
guomingz 已提交
437
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
438
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
439
        self.check_grad_with_place(
440 441 442 443
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
444

445
    def test_check_grad_no_filter(self):
446 447
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
448
            return
G
guomingz 已提交
449
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
450
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
451 452 453 454
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
455 456
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
457 458

    def test_check_grad_no_input(self):
459 460
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
461
            return
G
guomingz 已提交
462
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
463
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
464 465 466
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
467 468
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
469

C
chengduoZH 已提交
470 471 472 473 474
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
475
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
476 477
        self.filter_size = [6, f_c, 3, 3]

L
liym27 已提交
478 479 480
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
481 482 483
    def init_dilation(self):
        self.dilations = [1, 1]

C
chengduoZH 已提交
484
    def init_group(self):
H
hedaoyuan 已提交
485 486
        self.groups = 1

K
Kexin Zhao 已提交
487 488
    def init_kernel_type(self):
        pass
武毅 已提交
489

H
hedaoyuan 已提交
490

C
cnn 已提交
491
class TestWithPad(TestConv2DOp):
C
chengduoZH 已提交
492 493 494 495 496
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
497
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
498 499 500
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
501
class TestWithStride(TestConv2DOp):
C
chengduoZH 已提交
502 503 504 505 506
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
507
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
508 509 510
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
511
class TestWithGroup(TestConv2DOp):
Z
zhupengyang 已提交
512 513 514 515 516 517 518 519
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [18, f_c, 3, 3]
H
hedaoyuan 已提交
520

武毅 已提交
521

C
cnn 已提交
522
class TestWith1x1(TestConv2DOp):
C
chengduoZH 已提交
523 524 525 526 527
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
528
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
529
        self.filter_size = [120, f_c, 1, 1]
C
chengduoZH 已提交
530 531 532 533 534

    def init_group(self):
        self.groups = 3


C
cnn 已提交
535
class TestWithDepthWise3x3(TestConv2DOp):
536 537 538 539 540 541
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
542
        self.filter_size = [12, f_c, 3, 3]
543 544 545 546 547 548 549 550

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
551
class TestWithDepthWise5x5(TestConv2DOp):
552 553 554 555 556 557 558 559 560 561 562 563
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
564
class TestWithDepthWise7x7(TestConv2DOp):
565 566 567 568 569 570 571 572 573 574 575 576
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8


C
cnn 已提交
577
class TestWithDilation(TestConv2DOp):
C
chengduoZH 已提交
578 579 580 581 582
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
583
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
584
        self.filter_size = [12, f_c, 3, 3]
C
chengduoZH 已提交
585

C
chengduoZH 已提交
586 587
    def init_dilation(self):
        self.dilations = [2, 2]
C
chengduoZH 已提交
588

C
chengduoZH 已提交
589
    def init_group(self):
C
chengduoZH 已提交
590
        self.groups = 3
武毅 已提交
591

C
chengduoZH 已提交
592

C
cnn 已提交
593
class TestWithInput1x1Filter1x1(TestConv2DOp):
594 595 596
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
Z
zhupengyang 已提交
597
        self.input_size = [100, 3, 1, 1]  # NCHW
598
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
599
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
600
        self.filter_size = [120, f_c, 1, 1]
601 602 603 604 605

    def init_group(self):
        self.groups = 3


C
cnn 已提交
606
#----------------Conv2DCUDNN----------------
C
chengduoZH 已提交
607

C
cnn 已提交
608
create_test_cudnn_class(TestConv2DOp)
C
chengduo 已提交
609 610 611 612 613
create_test_cudnn_class(TestWithPad)
create_test_cudnn_class(TestWithStride)
create_test_cudnn_class(TestWithGroup)
create_test_cudnn_class(TestWith1x1)
create_test_cudnn_class(TestWithInput1x1Filter1x1)
K
Kexin Zhao 已提交
614

C
cnn 已提交
615
#----------------Conv2DCUDNN fp16----------------
C
chengduo 已提交
616

C
cnn 已提交
617
create_test_cudnn_fp16_class(TestConv2DOp, grad_check=False)
C
chengduo 已提交
618 619 620 621 622
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
C
chengduo 已提交
623

W
wuhuanzhou 已提交
624 625 626 627 628 629 630 631 632
#----------------Conv2DCUDNN bf16----------------

create_test_cudnn_bf16_class(TestConv2DOp)
create_test_cudnn_bf16_class(TestWithPad)
create_test_cudnn_bf16_class(TestWithStride)
create_test_cudnn_bf16_class(TestWithGroup)
create_test_cudnn_bf16_class(TestWith1x1)
create_test_cudnn_bf16_class(TestWithInput1x1Filter1x1)

633

C
cnn 已提交
634
class TestCUDNNExhaustiveSearch(TestConv2DOp):
635 636 637
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True
638
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
639 640


C
cnn 已提交
641
class TestConv2DOpError(unittest.TestCase):
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of conv2d must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                fluid.layers.conv2d(x1, 1, 1)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of conv2d must be float16 or float32 or float64
                # float16 only can be set on GPU place
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32")
                fluid.layers.conv2d(x2, 1, 1)

            self.assertRaises(TypeError, test_dtype)


663 664
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
665
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
666 667 668
#     def init_op_type(self):
#         self.op_type = "conv_cudnn"

L
liym27 已提交
669 670 671
# ---- test asymmetric padding ----


C
cnn 已提交
672
class TestConv2DOp_v2(OpTest):
L
liym27 已提交
673 674 675 676 677 678 679
    def setUp(self):
        self.op_type = "conv2d"
        self.use_cudnn = False
        self.exhaustive_search = False
        self.use_cuda = False
        self.use_mkldnn = False
        self.fuse_relu_before_depthwise_conv = False
680
        self.dtype = np.float64
L
liym27 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()
        self.init_test_case_2()

        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        if not self.has_cuda():
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
        output, _, _, _, _ = conv2d_forward_naive(
            input2, filter, self.groups, conv2d_param, self.padding_algorithm,
            self.data_format)
        output = output.astype(self.dtype)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format,
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
            'exhaustive_search': self.exhaustive_search
        }
        self.outputs = {'Output': output}

    def has_cuda(self):
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)

    def test_check_output(self):
735
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
736
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
737 738
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
739 740

    def test_check_grad(self):
741
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
742 743 744 745
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
746 747 748 749
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
750 751

    def test_check_grad_no_filter(self):
752
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
753 754 755 756 757 758 759
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
760 761
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
762 763

    def test_check_grad_no_input(self):
764
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
765 766 767 768 769 770
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
771 772
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
773 774 775

    def init_test_case(self):
        self.pad = [0, 0]
776
        self.stride = [1, 2]
L
liym27 已提交
777 778 779
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
780
        self.filter_size = [6, f_c, 4, 3]
L
liym27 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

    def init_dilation(self):
        self.dilations = [1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCHW"

    def init_test_case_2(self):
        pass


C
cnn 已提交
802
class TestConv2DOp_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
803 804 805 806 807
    def init_paddings(self):
        self.pad = [0, 0, 1, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
808
class TestWithPad_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
809 810 811 812 813 814 815 816 817 818 819 820
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
821
class TestWithStride_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
822 823 824 825 826 827 828 829 830 831 832 833
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
834
class TestWithGroup_AsyPadding(TestConv2DOp_v2):
Z
zhupengyang 已提交
835 836 837 838 839 840 841 842
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [24, f_c, 4, 3]
L
liym27 已提交
843 844


C
cnn 已提交
845
class TestWith1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
846 847 848 849 850
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
851
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
852 853 854 855 856 857 858 859 860

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [2, 2, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
861
class TestWithDepthWise3x3_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
862 863 864 865 866
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
867
        self.filter_size = [16, f_c, 3, 3]
L
liym27 已提交
868 869 870 871 872 873 874 875 876 877 878 879

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [1, 3, 2, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
880
class TestWithDepthWise5x5_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
896
class TestWithDepthWise7x7_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8

    def init_paddings(self):
        self.pad = [1, 3, 4, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
912
class TestWithDilation_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
913 914 915 916 917
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
918
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
919 920 921 922 923 924 925 926 927 928 929 930

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 1, 3, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
931
class TestWithInput1x1Filter1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
932 933
    def init_test_case(self):
        self.stride = [1, 1]
Z
zhupengyang 已提交
934
        self.input_size = [40, 3, 1, 1]  # NCHW
L
liym27 已提交
935 936
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
937
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
938 939 940 941 942 943 944 945 946

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 3, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
947
create_test_cudnn_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
948 949 950 951 952 953 954
create_test_cudnn_class(TestWithPad_AsyPadding)
create_test_cudnn_class(TestWithStride_AsyPadding)
create_test_cudnn_class(TestWithGroup_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithInput1x1Filter1x1_AsyPadding)

#---------- test SAME VALID -----------
C
cnn 已提交
955
create_test_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
956 957 958 959 960
create_test_padding_SAME_class(TestWithPad_AsyPadding)
create_test_padding_SAME_class(TestWithStride_AsyPadding)
create_test_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
961
create_test_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
962 963 964 965 966
create_test_padding_VALID_class(TestWithPad_AsyPadding)
create_test_padding_VALID_class(TestWithStride_AsyPadding)
create_test_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
967
create_test_cudnn_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
968 969 970 971 972
create_test_cudnn_padding_SAME_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
973
create_test_cudnn_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
974 975 976 977 978 979
create_test_cudnn_padding_VALID_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

# ------------ test channel last ---------
C
cnn 已提交
980
create_test_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
981 982 983 984 985
create_test_channel_last_class(TestWithPad_AsyPadding)
create_test_channel_last_class(TestWithGroup_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)
create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
986
create_test_cudnn_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
987 988 989 990 991
create_test_cudnn_channel_last_class(TestWithPad_AsyPadding)
create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup_AsyPadding)
create_test_cudnn_channel_last_class(TestWithDilation_AsyPadding)

992
create_test_cudnn_channel_last_fp16_class(
C
cnn 已提交
993
    TestConv2DOp_AsyPadding, grad_check=False)
994 995 996 997 998 999 1000 1001 1002
create_test_cudnn_channel_last_fp16_class(
    TestWithPad_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithStride_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithGroup_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithDilation_AsyPadding, grad_check=False)

1003 1004
if __name__ == '__main__':
    unittest.main()