op_teller.cc 22.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16
#include "paddle/fluid/framework/block_desc.h"
17
#include "paddle/fluid/framework/data_layout.h"
18

W
wanghuancoder 已提交
19 20 21 22 23 24
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

25 26 27 28 29 30
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
31 32 33
  SimpleOpTypeSetTeller() {
#if IS_TRT_VERSION_GE(5130)
    teller_set.insert("relu6");
34
    teller_set.insert("hard_sigmoid");
P
Pei Yang 已提交
35
    teller_set.insert("clip");
36 37
    int8_teller_set.insert("relu6");
    int8_teller_set.insert("hard_sigmoid");
P
Pei Yang 已提交
38
    int8_teller_set.insert("clip");
39 40 41 42 43
#endif
#if IS_TRT_VERSION_GE(6000)
    teller_set.insert("fused_embedding_eltwise_layernorm");
    teller_set.insert("multihead_matmul");
    teller_set.insert("skip_layernorm");
44
    teller_set.insert("slice");
C
ceci3 已提交
45
    int8_teller_set.insert("fused_embedding_eltwise_layernorm");
46 47 48
    int8_teller_set.insert("multihead_matmul");
    int8_teller_set.insert("skip_layernorm");
    int8_teller_set.insert("slice");
C
ceci3 已提交
49 50 51
#endif
#if IS_TRT_VERSION_GE(7130)
    teller_set.insert("group_norm");
52 53
#endif
  }
54

55 56 57 58 59 60 61
  bool operator()(const std::string& op_type, const framework::OpDesc& desc,
                  bool use_no_calib_int8) override {
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
62 63 64
  }

 private:
65
  // use this set for no calib int8.
66 67
  std::unordered_set<std::string> int8_teller_set{"mul",
                                                  "conv2d",
C
ceci3 已提交
68 69
                                                  "matmul",
                                                  "stack",
70
                                                  "conv2d_fusion",
71 72 73 74
                                                  "pool2d",
                                                  "relu",
                                                  "depthwise_conv2d",
                                                  "softmax",
75
                                                  "sigmoid",
76 77 78 79
                                                  "batch_norm",
                                                  "elementwise_add",
                                                  "leaky_relu",
                                                  "fc",
80 81 82
                                                  "concat",
                                                  "scale",
                                                  "elementwise_mul",
83 84
                                                  "conv2d_transpose",
                                                  "hard_swish"};
85
  std::unordered_set<std::string> teller_set{
86
      "mul",
87
      "matmul",
88
      "conv2d",
89
      "conv2d_fusion",
90 91 92 93
      "pool2d",
      "relu",
      "softmax",
      "sigmoid",
94
      "hard_swish",
95 96 97 98 99 100 101 102 103 104
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
      "elementwise_mul",
      "dropout",
      "prelu",
      "conv2d_transpose",
105
      "depthwise_conv2d_transpose",
106 107 108 109 110 111 112 113
      "leaky_relu",
      "fc",
      "shuffle_channel",
      "swish",
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
114
      "scale",
115
      "stack",
116 117 118 119
      "transpose2",
      "transpose",
      "flatten2",
      "flatten",
120
      "gather",
Z
zlsh80826 已提交
121
      "yolo_box",
122
      "roi_align",
123
      "affine_channel",
124
      "nearest_interp",
125
      "anchor_generator",
126
  };
127 128
};

129 130 131 132
bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
133
  // do not support the op which is labeled the `skip_quant`
134
  if ((desc.HasAttr("namescope") &&
135
       BOOST_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
136 137
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
138
    return false;
139

140
  for (auto& teller : tellers_) {
141
    if (op_type == "depthwise_conv2d") {
142
      std::vector<int> paddings =
143
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
144

145
      if (paddings.size() > 2) return false;
146
    }
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

    if (op_type == "pool2d") {
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
      if (paddings.size() > 2) return false;
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
            BOOST_GET_CONST(std::string, desc.GetAttr("pooling_type"));
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
176 177
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));

      // conv2d and conv2d_transpose need padding check
      if (paddings.size() > 2 && op_type != "conv2d_fusion") return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

207 208
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
              BOOST_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
228

W
wenbin 已提交
229
// strides > 1 and 'SAME' is only supported by trt7.0 above
230
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
              BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
                BOOST_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
245 246 247 248
          }
        }
      }
#endif
249 250
    }

251 252 253 254 255 256 257
    if (op_type == "matmul") {
      auto* block = desc.Block();
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
258
            VLOG(3)
P
Pei Yang 已提交
259 260
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
261 262 263 264 265
            return false;
          }
        }
      }
    }
266
    if (op_type == "group_norm") {
267
      if (!with_dynamic_shape) return false;
268 269 270 271 272 273 274 275 276 277 278
      bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups"));
      if (has_attrs == false) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
        int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
279 280 281 282 283
        if (with_dynamic_shape) {
          if (axis < 0) return false;
        } else {
          if (axis <= 0) return false;
        }
284 285
      }
    }
286 287 288 289 290 291 292 293 294 295
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
        std::vector<int> axis =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
        if (!with_dynamic_shape && axis[0] != 0) return false;
        if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;
      }
    }
296 297 298 299 300 301 302 303 304 305 306 307
    if (op_type == "flatten2") {
      // flatten doesn't support dynamic shape currently
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
        if (with_dynamic_shape) return false;
        int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
        if (axis != 1) return false;
      }
    }

    if (op_type == "flatten") {
308 309 310 311 312 313 314 315 316
      // flatten doesn't support dynamic shape currently
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
        if (with_dynamic_shape) return false;
        int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
        if (axis != 1) return false;
      }
    }
317

318 319 320 321
    if (op_type == "gather") {
      // current not support axis from input, use default 0
      if (!with_dynamic_shape || desc.Input("Axis").size() > 0) return false;
    }
Z
zlsh80826 已提交
322

Z
zlsh80826 已提交
323 324 325 326 327 328
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
329
      if (!has_attrs) return false;
Z
zlsh80826 已提交
330 331
    }

332 333 334 335 336 337 338
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
      auto data_layout = framework::StringToDataLayout(
          BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
      if (data_layout != framework::DataLayout::kNCHW) return false;
    }

Z
zlsh80826 已提交
339 340 341 342 343 344 345 346
    if (op_type == "multiclass_nms") {
      if (with_dynamic_shape) return false;
      auto* block = desc.Block();
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
347
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

      auto nms_top_k = BOOST_GET_CONST(int, desc.GetAttr("nms_top_k"));
      if (nms_top_k < 0) return false;

      auto keep_top_k = BOOST_GET_CONST(int, desc.GetAttr("keep_top_k"));
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    if (op_type == "nearest_interp") {
      std::vector<std::string> attrs{"data_layout",   "interp_method",
                                     "align_corners", "scale",
                                     "out_h",         "out_w"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
      auto data_layout = framework::StringToDataLayout(
          BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
      if (data_layout != framework::DataLayout::kNCHW &&
          data_layout != framework::DataLayout::kNHWC)
        return false;
      auto interp_method =
          BOOST_GET_CONST(std::string, desc.GetAttr("interp_method"));
      if (interp_method != "nearest") return false;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

      if (!desc.HasAttr("scale") || !desc.HasAttr("out_h") ||
          !desc.HasAttr("out_w")) {
        return false;
      } else {
        auto scale = BOOST_GET_CONST(float, desc.GetAttr("scale"));
        auto out_h = BOOST_GET_CONST(int, desc.GetAttr("out_h"));
        auto out_w = BOOST_GET_CONST(int, desc.GetAttr("out_w"));
        if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
          if (out_h <= 0) {
            VLOG(3) << "out_h must be greater than 0 if scale is not set.";
            return false;
          }
          if (out_w <= 0) {
            VLOG(3) << "out_w must be greater than 0 if scale is not set.";
            return false;
          }
        }
      }
404
    }
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

    if (op_type == "roi_align") {
      if (!with_dynamic_shape) return false;

      std::vector<std::string> attrs{"pooled_height", "pooled_width",
                                     "spatial_scale", "sampling_ratio"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_height"));
      if (pooled_height <= 0) return false;

      const auto pooled_width =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_width"));
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
          BOOST_GET_CONST(float, desc.GetAttr("spatial_scale"));
      if (spatial_scale <= 0.f) return false;
    }

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "batch_norm") {
      const std::vector<std::string> bn_inputs = {"X", "Bias", "Mean", "Scale",
                                                  "Variance"};
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }

      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
        int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
        if (axis == 0) {
          VLOG(3) << "Invalid split axis. Split on batch is not supported in "
                     "TensorRT";
          return false;
        }
      }
    }

    if (op_type == "slice") {
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends")) {
        return false;
      } else {
        std::vector<int> axes =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
        std::vector<int> starts =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
        std::vector<int> ends =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
        if (axes.size() != starts.size() || axes.size() != ends.size()) {
          return false;
        }
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
    }

    if (op_type == "elementwise_add" || op_type == "elementwise_mul") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
    }

    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused EmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
    }

    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
      const float pad_value = BOOST_GET_CONST(float, desc.GetAttr("pad_value"));
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
    }

    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
    }

    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
    }

    if (op_type == "shuffle_channel") {
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
                   "the shuffle_channel op does not support dynamic shape yet";
        return false;
      }
    }

    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
    }

657 658 659 660 661 662 663 664 665 666 667 668 669 670
    if (op_type == "fc") {
      int x_num_col_dims =
          desc.HasAttr("x_num_col_dims")
              ? BOOST_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
              : (desc.HasAttr("in_num_col_dims")
                     ? BOOST_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
                     : 1);
      if (x_num_col_dims < 1) {
        VLOG(3) << "converter expects x_num_col_dims >= 1, "
                   "but x_num_col_dims = %d.";
        return false;
      }
    }

671
    if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
672 673 674 675 676 677 678 679 680
  }
  return false;
}

OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); }

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle