test_transforms.py 23.3 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import os
import tempfile
import cv2
import shutil
import numpy as np
21
from PIL import Image
L
LielinJiang 已提交
22

23 24
import paddle
from paddle.vision import get_image_backend, set_image_backend, image_load
25 26 27
from paddle.vision.datasets import DatasetFolder
from paddle.vision.transforms import transforms
import paddle.vision.transforms.functional as F
L
LielinJiang 已提交
28 29


30
class TestTransformsCV2(unittest.TestCase):
L
LielinJiang 已提交
31
    def setUp(self):
32 33
        self.backend = self.get_backend()
        set_image_backend(self.backend)
L
LielinJiang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47
        self.data_dir = tempfile.mkdtemp()
        for i in range(2):
            sub_dir = os.path.join(self.data_dir, 'class_' + str(i))
            if not os.path.exists(sub_dir):
                os.makedirs(sub_dir)
            for j in range(2):
                if j == 0:
                    fake_img = (np.random.random(
                        (280, 350, 3)) * 255).astype('uint8')
                else:
                    fake_img = (np.random.random(
                        (400, 300, 3)) * 255).astype('uint8')
                cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img)

48 49 50 51 52 53 54 55 56 57 58
    def get_backend(self):
        return 'cv2'

    def create_image(self, shape):
        if self.backend == 'cv2':
            return (np.random.rand(*shape) * 255).astype('uint8')
        elif self.backend == 'pil':
            return Image.fromarray((np.random.rand(*shape) * 255).astype(
                'uint8'))

    def get_shape(self, img):
59 60 61 62
        if isinstance(img, paddle.Tensor):
            return img.shape

        elif self.backend == 'pil':
63 64 65 66
            return np.array(img).shape

        return img.shape

L
LielinJiang 已提交
67 68 69 70 71 72 73 74 75 76 77
    def tearDown(self):
        shutil.rmtree(self.data_dir)

    def do_transform(self, trans):
        dataset_folder = DatasetFolder(self.data_dir, transform=trans)

        for _ in dataset_folder:
            pass

    def test_trans_all(self):
        normalize = transforms.Normalize(
78 79
            mean=[123.675, 116.28, 103.53],
            std=[58.395, 57.120, 57.375], )
L
LielinJiang 已提交
80
        trans = transforms.Compose([
81
            transforms.RandomResizedCrop(224),
L
LielinJiang 已提交
82
            transforms.ColorJitter(
83 84 85 86
                brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4),
            transforms.RandomHorizontalFlip(),
            transforms.Transpose(),
            normalize,
L
LielinJiang 已提交
87 88 89 90
        ])

        self.do_transform(trans)

L
LielinJiang 已提交
91 92
    def test_normalize(self):
        normalize = transforms.Normalize(mean=0.5, std=0.5)
93
        trans = transforms.Compose([transforms.Transpose(), normalize])
L
LielinJiang 已提交
94 95
        self.do_transform(trans)

L
LielinJiang 已提交
96 97
    def test_trans_resize(self):
        trans = transforms.Compose([
98
            transforms.Resize(300),
L
LielinJiang 已提交
99
            transforms.RandomResizedCrop((280, 280)),
100
            transforms.Resize(280),
L
LielinJiang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            transforms.Resize((256, 200)),
            transforms.Resize((180, 160)),
            transforms.CenterCrop(128),
            transforms.CenterCrop((128, 128)),
        ])
        self.do_transform(trans)

    def test_flip(self):
        trans = transforms.Compose([
            transforms.RandomHorizontalFlip(1.0),
            transforms.RandomHorizontalFlip(0.0),
            transforms.RandomVerticalFlip(0.0),
            transforms.RandomVerticalFlip(1.0),
        ])
        self.do_transform(trans)

    def test_color_jitter(self):
118
        trans = transforms.Compose([
L
LielinJiang 已提交
119 120 121 122 123 124 125
            transforms.BrightnessTransform(0.0),
            transforms.HueTransform(0.0),
            transforms.SaturationTransform(0.0),
            transforms.ContrastTransform(0.0),
        ])
        self.do_transform(trans)

L
LielinJiang 已提交
126 127
    def test_rotate(self):
        trans = transforms.Compose([
128 129 130
            transforms.RandomRotation(90),
            transforms.RandomRotation([-10, 10]),
            transforms.RandomRotation(
L
LielinJiang 已提交
131
                45, expand=True),
132
            transforms.RandomRotation(
L
LielinJiang 已提交
133 134 135 136 137 138 139 140
                10, expand=True, center=(60, 80)),
        ])
        self.do_transform(trans)

    def test_pad(self):
        trans = transforms.Compose([transforms.Pad(2)])
        self.do_transform(trans)

141
        fake_img = self.create_image((200, 150, 3))
L
LielinJiang 已提交
142 143
        trans_pad = transforms.Pad(10)
        fake_img_padded = trans_pad(fake_img)
144
        np.testing.assert_equal(self.get_shape(fake_img_padded), (220, 170, 3))
L
LielinJiang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        trans_pad1 = transforms.Pad([1, 2])
        trans_pad2 = transforms.Pad([1, 2, 3, 4])
        img = trans_pad1(fake_img)
        img = trans_pad2(img)

    def test_random_crop(self):
        trans = transforms.Compose([
            transforms.RandomCrop(200),
            transforms.RandomCrop((140, 160)),
        ])
        self.do_transform(trans)

        trans_random_crop1 = transforms.RandomCrop(224)
        trans_random_crop2 = transforms.RandomCrop((140, 160))

160
        fake_img = self.create_image((500, 400, 3))
L
LielinJiang 已提交
161 162 163
        fake_img_crop1 = trans_random_crop1(fake_img)
        fake_img_crop2 = trans_random_crop2(fake_img_crop1)

164
        np.testing.assert_equal(self.get_shape(fake_img_crop1), (224, 224, 3))
L
LielinJiang 已提交
165

166
        np.testing.assert_equal(self.get_shape(fake_img_crop2), (140, 160, 3))
L
LielinJiang 已提交
167 168 169 170

        trans_random_crop_same = transforms.RandomCrop((140, 160))
        img = trans_random_crop_same(fake_img_crop2)

171 172
        trans_random_crop_bigger = transforms.RandomCrop(
            (180, 200), pad_if_needed=True)
L
LielinJiang 已提交
173 174 175 176 177 178 179 180 181 182
        img = trans_random_crop_bigger(img)

        trans_random_crop_pad = transforms.RandomCrop((224, 256), 2, True)
        img = trans_random_crop_pad(img)

    def test_grayscale(self):
        trans = transforms.Compose([transforms.Grayscale()])
        self.do_transform(trans)

        trans_gray = transforms.Grayscale()
183
        fake_img = self.create_image((500, 400, 3))
L
LielinJiang 已提交
184 185
        fake_img_gray = trans_gray(fake_img)

186 187
        np.testing.assert_equal(self.get_shape(fake_img_gray)[0], 500)
        np.testing.assert_equal(self.get_shape(fake_img_gray)[1], 400)
L
LielinJiang 已提交
188 189

        trans_gray3 = transforms.Grayscale(3)
190
        fake_img = self.create_image((500, 400, 3))
L
LielinJiang 已提交
191 192
        fake_img_gray = trans_gray3(fake_img)

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    def test_tranpose(self):
        trans = transforms.Compose([transforms.Transpose()])
        self.do_transform(trans)

        fake_img = self.create_image((50, 100, 3))
        converted_img = trans(fake_img)

        np.testing.assert_equal(self.get_shape(converted_img), (3, 50, 100))

    def test_to_tensor(self):
        trans = transforms.Compose([transforms.ToTensor()])
        fake_img = self.create_image((50, 100, 3))

        tensor = trans(fake_img)

        assert isinstance(tensor, paddle.Tensor)
        np.testing.assert_equal(tensor.shape, (3, 50, 100))

211 212 213 214 215 216
    def test_keys(self):
        fake_img1 = self.create_image((200, 150, 3))
        fake_img2 = self.create_image((200, 150, 3))
        trans_pad = transforms.Pad(10, keys=("image", ))
        fake_img_padded = trans_pad((fake_img1, fake_img2))

L
LielinJiang 已提交
217 218 219
    def test_exception(self):
        trans = transforms.Compose([transforms.Resize(-1)])

220
        trans_batch = transforms.Compose([transforms.Resize(-1)])
L
LielinJiang 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

        with self.assertRaises(Exception):
            self.do_transform(trans)

        with self.assertRaises(Exception):
            self.do_transform(trans_batch)

        with self.assertRaises(ValueError):
            transforms.ContrastTransform(-1.0)

        with self.assertRaises(ValueError):
            transforms.SaturationTransform(-1.0),

        with self.assertRaises(ValueError):
            transforms.HueTransform(-1.0)

        with self.assertRaises(ValueError):
            transforms.BrightnessTransform(-1.0)

L
LielinJiang 已提交
240 241 242 243
        with self.assertRaises(ValueError):
            transforms.Pad([1.0, 2.0, 3.0])

        with self.assertRaises(TypeError):
244
            fake_img = self.create_image((100, 120, 3))
L
LielinJiang 已提交
245 246 247
            F.pad(fake_img, '1')

        with self.assertRaises(TypeError):
248
            fake_img = self.create_image((100, 120, 3))
L
LielinJiang 已提交
249 250 251
            F.pad(fake_img, 1, {})

        with self.assertRaises(TypeError):
252
            fake_img = self.create_image((100, 120, 3))
L
LielinJiang 已提交
253 254 255
            F.pad(fake_img, 1, padding_mode=-1)

        with self.assertRaises(ValueError):
256
            fake_img = self.create_image((100, 120, 3))
L
LielinJiang 已提交
257 258
            F.pad(fake_img, [1.0, 2.0, 3.0])

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        with self.assertRaises(TypeError):
            tensor_img = paddle.rand((3, 100, 100))
            F.pad(tensor_img, '1')

        with self.assertRaises(TypeError):
            tensor_img = paddle.rand((3, 100, 100))
            F.pad(tensor_img, 1, {})

        with self.assertRaises(TypeError):
            tensor_img = paddle.rand((3, 100, 100))
            F.pad(tensor_img, 1, padding_mode=-1)

        with self.assertRaises(ValueError):
            tensor_img = paddle.rand((3, 100, 100))
            F.pad(tensor_img, [1.0, 2.0, 3.0])

L
LielinJiang 已提交
275
        with self.assertRaises(ValueError):
276
            transforms.RandomRotation(-2)
L
LielinJiang 已提交
277 278

        with self.assertRaises(ValueError):
279
            transforms.RandomRotation([1, 2, 3])
L
LielinJiang 已提交
280 281 282

        with self.assertRaises(ValueError):
            trans_gray = transforms.Grayscale(5)
283
            fake_img = self.create_image((100, 120, 3))
L
LielinJiang 已提交
284 285
            trans_gray(fake_img)

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        with self.assertRaises(TypeError):
            transform = transforms.RandomResizedCrop(64)
            transform(1)

        with self.assertRaises(ValueError):
            transform = transforms.BrightnessTransform([-0.1, -0.2])

        with self.assertRaises(TypeError):
            transform = transforms.BrightnessTransform('0.1')

        with self.assertRaises(ValueError):
            transform = transforms.BrightnessTransform('0.1', keys=1)

        with self.assertRaises(NotImplementedError):
            transform = transforms.BrightnessTransform('0.1', keys='a')

L
LielinJiang 已提交
302 303
    def test_info(self):
        str(transforms.Compose([transforms.Resize((224, 224))]))
304 305 306 307 308 309 310 311
        str(transforms.Compose([transforms.Resize((224, 224))]))


class TestTransformsPIL(TestTransformsCV2):
    def get_backend(self):
        return 'pil'


312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
class TestTransformsTensor(TestTransformsCV2):
    def get_backend(self):
        return 'tensor'

    def create_image(self, shape):
        return paddle.to_tensor(np.random.rand(*shape)).transpose(
            (2, 0, 1))  # hwc->chw

    def do_transform(self, trans):
        trans.transforms.insert(0, transforms.ToTensor(data_format='CHW'))
        trans.transforms.append(transforms.Transpose(order=(1, 2, 0)))
        dataset_folder = DatasetFolder(self.data_dir, transform=trans)
        for _ in dataset_folder:
            pass

    def test_trans_all(self):
        normalize = transforms.Normalize(
            mean=[123.675, 116.28, 103.53],
            std=[58.395, 57.120, 57.375], )
        trans = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            normalize,
        ])
        self.do_transform(trans)

    def test_grayscale(self):
        trans = transforms.Compose([transforms.Grayscale()])
        self.do_transform(trans)

        trans_gray = transforms.Grayscale()
        fake_img = self.create_image((500, 400, 3))
        fake_img_gray = trans_gray(fake_img)

        np.testing.assert_equal(self.get_shape(fake_img_gray)[1], 500)
        np.testing.assert_equal(self.get_shape(fake_img_gray)[2], 400)

        trans_gray3 = transforms.Grayscale(3)
        fake_img = self.create_image((500, 400, 3))
        fake_img_gray = trans_gray3(fake_img)

    def test_normalize(self):
        normalize = transforms.Normalize(mean=0.5, std=0.5)
        trans = transforms.Compose([normalize])
        self.do_transform(trans)

    def test_pad(self):
        trans = transforms.Compose([transforms.Pad(2)])
        self.do_transform(trans)

        fake_img = self.create_image((200, 150, 3))
        trans_pad = transforms.Compose([transforms.Pad(10)])
        fake_img_padded = trans_pad(fake_img)
        np.testing.assert_equal(self.get_shape(fake_img_padded), (3, 220, 170))
        trans_pad1 = transforms.Pad([1, 2])
        trans_pad2 = transforms.Pad([1, 2, 3, 4])
        trans_pad4 = transforms.Pad(1, padding_mode='edge')
        img = trans_pad1(fake_img)
        img = trans_pad2(img)
        img = trans_pad4(img)

    def test_random_crop(self):
        trans = transforms.Compose([
            transforms.RandomCrop(200),
            transforms.RandomCrop((140, 160)),
        ])
        self.do_transform(trans)

        trans_random_crop1 = transforms.RandomCrop(224)
        trans_random_crop2 = transforms.RandomCrop((140, 160))

        fake_img = self.create_image((500, 400, 3))
        fake_img_crop1 = trans_random_crop1(fake_img)
        fake_img_crop2 = trans_random_crop2(fake_img_crop1)

        np.testing.assert_equal(self.get_shape(fake_img_crop1), (3, 224, 224))

        np.testing.assert_equal(self.get_shape(fake_img_crop2), (3, 140, 160))

        trans_random_crop_same = transforms.RandomCrop((140, 160))
        img = trans_random_crop_same(fake_img_crop2)

        trans_random_crop_bigger = transforms.RandomCrop(
            (180, 200), pad_if_needed=True)
        img = trans_random_crop_bigger(img)

        trans_random_crop_pad = transforms.RandomCrop((224, 256), 2, True)
        img = trans_random_crop_pad(img)

    def test_exception(self):
        trans = transforms.Compose([transforms.Resize(-1)])

        trans_batch = transforms.Compose([transforms.Resize(-1)])

        with self.assertRaises(Exception):
            self.do_transform(trans)

        with self.assertRaises(Exception):
            self.do_transform(trans_batch)

        with self.assertRaises(ValueError):
            transforms.Pad([1.0, 2.0, 3.0])

        with self.assertRaises(TypeError):
            fake_img = self.create_image((100, 120, 3))
            F.pad(fake_img, '1')

        with self.assertRaises(TypeError):
            fake_img = self.create_image((100, 120, 3))
            F.pad(fake_img, 1, {})

        with self.assertRaises(TypeError):
            fake_img = self.create_image((100, 120, 3))
            F.pad(fake_img, 1, padding_mode=-1)

        with self.assertRaises(ValueError):
            fake_img = self.create_image((100, 120, 3))
            F.pad(fake_img, [1.0, 2.0, 3.0])

        with self.assertRaises(TypeError):
            tensor_img = paddle.rand((3, 100, 100))
            F.pad(tensor_img, '1')

        with self.assertRaises(TypeError):
            tensor_img = paddle.rand((3, 100, 100))
            F.pad(tensor_img, 1, {})

        with self.assertRaises(TypeError):
            tensor_img = paddle.rand((3, 100, 100))
            F.pad(tensor_img, 1, padding_mode=-1)

        with self.assertRaises(ValueError):
            tensor_img = paddle.rand((3, 100, 100))
            F.pad(tensor_img, [1.0, 2.0, 3.0])

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-2)

        with self.assertRaises(ValueError):
            transforms.RandomRotation([1, 2, 3])

        with self.assertRaises(ValueError):
            trans_gray = transforms.Grayscale(5)
            fake_img = self.create_image((100, 120, 3))
            trans_gray(fake_img)

        with self.assertRaises(TypeError):
            transform = transforms.RandomResizedCrop(64)
            transform(1)

    test_color_jitter = None


465 466 467 468 469 470 471 472 473 474
class TestFunctional(unittest.TestCase):
    def test_errors(self):
        with self.assertRaises(TypeError):
            F.to_tensor(1)

        with self.assertRaises(ValueError):
            fake_img = Image.fromarray((np.random.rand(28, 28, 3) * 255).astype(
                'uint8'))
            F.to_tensor(fake_img, data_format=1)

475 476 477 478 479 480 481 482
        with self.assertRaises(ValueError):
            fake_img = paddle.rand((3, 100, 100))
            F.pad(fake_img, 1, padding_mode='symmetric')

        with self.assertRaises(TypeError):
            fake_img = paddle.rand((3, 100, 100))
            F.resize(fake_img, {1: 1})

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        with self.assertRaises(TypeError):
            fake_img = Image.fromarray((np.random.rand(28, 28, 3) * 255).astype(
                'uint8'))
            F.resize(fake_img, '1')

        with self.assertRaises(TypeError):
            F.resize(1, 1)

        with self.assertRaises(TypeError):
            F.pad(1, 1)

        with self.assertRaises(TypeError):
            F.crop(1, 1, 1, 1, 1)

        with self.assertRaises(TypeError):
            F.hflip(1)

        with self.assertRaises(TypeError):
            F.vflip(1)

        with self.assertRaises(TypeError):
            F.adjust_brightness(1, 0.1)

        with self.assertRaises(TypeError):
            F.adjust_contrast(1, 0.1)

        with self.assertRaises(TypeError):
            F.adjust_hue(1, 0.1)

        with self.assertRaises(TypeError):
            F.adjust_saturation(1, 0.1)

        with self.assertRaises(TypeError):
            F.rotate(1, 0.1)

        with self.assertRaises(TypeError):
            F.to_grayscale(1)

        with self.assertRaises(ValueError):
            set_image_backend(1)

        with self.assertRaises(ValueError):
            image_load('tmp.jpg', backend=1)

    def test_normalize(self):
528
        np_img = (np.random.rand(28, 24, 3) * 255).astype('uint8')
529 530
        pil_img = Image.fromarray(np_img)
        tensor_img = F.to_tensor(pil_img)
531
        tensor_img_hwc = F.to_tensor(pil_img, data_format='HWC') * 255
532 533 534 535 536

        mean = [0.5, 0.5, 0.5]
        std = [0.5, 0.5, 0.5]

        normalized_img = F.normalize(tensor_img, mean, std)
537
        normalized_img_tensor = F.normalize(
538 539
            tensor_img_hwc, mean, std, data_format='HWC')

540 541
        normalized_img_pil = F.normalize(pil_img, mean, std, data_format='HWC')
        normalized_img_np = F.normalize(
542
            np_img, mean, std, data_format='HWC', to_rgb=False)
543

544 545
        np.testing.assert_almost_equal(
            np.array(normalized_img_pil), normalized_img_np)
546 547
        np.testing.assert_almost_equal(
            normalized_img_tensor.numpy(), normalized_img_np, decimal=4)
548

549
    def test_center_crop(self):
550
        np_img = (np.random.rand(28, 24, 3) * 255).astype('uint8')
551
        pil_img = Image.fromarray(np_img)
552
        tensor_img = F.to_tensor(pil_img, data_format='CHW') * 255
553 554 555

        np_cropped_img = F.center_crop(np_img, 4)
        pil_cropped_img = F.center_crop(pil_img, 4)
556
        tensor_cropped_img = F.center_crop(tensor_img, 4)
557 558 559

        np.testing.assert_almost_equal(np_cropped_img,
                                       np.array(pil_cropped_img))
560 561 562 563
        np.testing.assert_almost_equal(
            np_cropped_img,
            tensor_cropped_img.numpy().transpose((1, 2, 0)),
            decimal=4)
564 565

    def test_pad(self):
566
        np_img = (np.random.rand(28, 24, 3) * 255).astype('uint8')
567
        pil_img = Image.fromarray(np_img)
568
        tensor_img = F.to_tensor(pil_img, 'CHW') * 255
569 570 571

        np_padded_img = F.pad(np_img, [1, 2], padding_mode='reflect')
        pil_padded_img = F.pad(pil_img, [1, 2], padding_mode='reflect')
572
        tensor_padded_img = F.pad(tensor_img, [1, 2], padding_mode='reflect')
573 574

        np.testing.assert_almost_equal(np_padded_img, np.array(pil_padded_img))
575 576 577 578
        np.testing.assert_almost_equal(
            np_padded_img,
            tensor_padded_img.numpy().transpose((1, 2, 0)),
            decimal=3)
579 580 581 582

        tensor_padded_img = F.pad(tensor_img, 1, padding_mode='reflect')
        tensor_padded_img = F.pad(tensor_img, [1, 2, 1, 2],
                                  padding_mode='reflect')
583 584 585 586 587 588

        pil_p_img = pil_img.convert('P')
        pil_padded_img = F.pad(pil_p_img, [1, 2])
        pil_padded_img = F.pad(pil_p_img, [1, 2], padding_mode='reflect')

    def test_resize(self):
589
        np_img = (np.zeros([28, 24, 3]) * 255).astype('uint8')
590
        pil_img = Image.fromarray(np_img)
591
        tensor_img = F.to_tensor(pil_img, 'CHW') * 255
592 593 594

        np_reseized_img = F.resize(np_img, 40)
        pil_reseized_img = F.resize(pil_img, 40)
595 596
        tensor_reseized_img = F.resize(tensor_img, 40)
        tensor_reseized_img2 = F.resize(tensor_img, (46, 40))
597 598 599

        np.testing.assert_almost_equal(np_reseized_img,
                                       np.array(pil_reseized_img))
600 601 602 603 604 605 606 607
        np.testing.assert_almost_equal(
            np_reseized_img,
            tensor_reseized_img.numpy().transpose((1, 2, 0)),
            decimal=3)
        np.testing.assert_almost_equal(
            np_reseized_img,
            tensor_reseized_img2.numpy().transpose((1, 2, 0)),
            decimal=3)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

        gray_img = (np.zeros([28, 32])).astype('uint8')
        gray_resize_img = F.resize(gray_img, 40)

    def test_to_tensor(self):
        np_img = (np.random.rand(28, 28) * 255).astype('uint8')
        pil_img = Image.fromarray(np_img)

        np_tensor = F.to_tensor(np_img, data_format='HWC')
        pil_tensor = F.to_tensor(pil_img, data_format='HWC')

        np.testing.assert_allclose(np_tensor.numpy(), pil_tensor.numpy())

        # test float dtype 
        float_img = np.random.rand(28, 28)
        float_tensor = F.to_tensor(float_img)

        pil_img = Image.fromarray(np_img).convert('I')
        pil_tensor = F.to_tensor(pil_img)

        pil_img = Image.fromarray(np_img).convert('I;16')
        pil_tensor = F.to_tensor(pil_img)

        pil_img = Image.fromarray(np_img).convert('F')
        pil_tensor = F.to_tensor(pil_img)

        pil_img = Image.fromarray(np_img).convert('1')
        pil_tensor = F.to_tensor(pil_img)

        pil_img = Image.fromarray(np_img).convert('YCbCr')
        pil_tensor = F.to_tensor(pil_img)

    def test_image_load(self):
        fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype(
            'uint8'))

644 645
        temp_dir = tempfile.TemporaryDirectory()
        path = os.path.join(temp_dir.name, 'temp.jpg')
646 647 648 649 650 651 652 653 654 655 656 657
        fake_img.save(path)

        set_image_backend('pil')

        pil_img = image_load(path).convert('RGB')

        print(type(pil_img))

        set_image_backend('cv2')

        np_img = image_load(path)

658
        temp_dir.cleanup()
L
LielinJiang 已提交
659

660 661 662 663 664 665
    def test_rotate(self):
        np_img = (np.random.rand(28, 28, 3) * 255).astype('uint8')
        pil_img = Image.fromarray(np_img).convert('RGB')
        rotated_np_img = F.rotate(np_img, 80, expand=True)
        rotated_pil_img = F.rotate(pil_img, 80, expand=True)

666 667 668 669 670 671 672 673 674 675 676
        tensor_img = F.to_tensor(pil_img, 'CHW')

        rotated_tensor_img1 = F.rotate(tensor_img, 80, expand=True)

        rotated_tensor_img2 = F.rotate(
            tensor_img,
            80,
            interpolation='bilinear',
            center=(10, 10),
            expand=False)

677 678
        np.testing.assert_equal(rotated_np_img.shape,
                                np.array(rotated_pil_img).shape)
679 680
        np.testing.assert_equal(rotated_np_img.shape,
                                rotated_tensor_img1.transpose((1, 2, 0)).shape)
681

682 683 684 685 686 687 688 689 690 691 692 693
    def test_rotate1(self):
        np_img = (np.random.rand(28, 28, 3) * 255).astype('uint8')
        pil_img = Image.fromarray(np_img).convert('RGB')

        rotated_np_img = F.rotate(
            np_img, 80, expand=True, center=[0, 0], fill=[0, 0, 0])
        rotated_pil_img = F.rotate(
            pil_img, 80, expand=True, center=[0, 0], fill=[0, 0, 0])

        np.testing.assert_equal(rotated_np_img.shape,
                                np.array(rotated_pil_img).shape)

L
LielinJiang 已提交
694 695 696

if __name__ == '__main__':
    unittest.main()