test_rnn_nets.py 12.6 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
paddle.set_default_dtype("float64")
from paddle.fluid.layers import sequence_mask

19
import os
F
Feiyu Chan 已提交
20 21
import numpy as np
import unittest
22
import tempfile
F
Feiyu Chan 已提交
23 24 25 26

from convert import convert_params_for_net
from rnn_numpy import SimpleRNN, LSTM, GRU

27 28
bidirectional_list = ["bidirectional", "bidirect"]

F
Feiyu Chan 已提交
29 30 31 32 33 34

class TestSimpleRNN(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestSimpleRNN, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
35
        self.num_directions = 2 if direction in bidirectional_list else 1
36
        self.place = place
F
Feiyu Chan 已提交
37 38

    def setUp(self):
39 40 41 42
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
F
Feiyu Chan 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        rnn1 = SimpleRNN(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        rnn2 = paddle.nn.SimpleRNN(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)

        y1, h1 = rnn1(x, prev_h)
62
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
63 64 65 66 67 68 69 70 71 72 73 74
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
75
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

90
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
91 92 93
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
94
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
95 96
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
97 98 99 100

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

G
Guo Sheng 已提交
101 102 103
    def test_predict(self):
        predict_test_util(self.place, "SimpleRNN")

F
Feiyu Chan 已提交
104 105 106 107
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
G
Guo Sheng 已提交
108
        self.test_predict()
F
Feiyu Chan 已提交
109 110 111 112 113 114 115


class TestGRU(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestGRU, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
116
        self.num_directions = 2 if direction in bidirectional_list else 1
117
        self.place = place
F
Feiyu Chan 已提交
118 119

    def setUp(self):
120 121 122 123
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
F
Feiyu Chan 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        rnn1 = GRU(16,
                   32,
                   2,
                   time_major=self.time_major,
                   direction=self.direction)
        rnn2 = paddle.nn.GRU(16,
                             32,
                             2,
                             time_major=self.time_major,
                             direction=self.direction)
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)

        y1, h1 = rnn1(x, prev_h)
149
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
150 151 152 153 154 155 156 157 158 159 160 161
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
162
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

177
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
178 179 180
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
181
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
182 183
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
184 185 186 187

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

G
Guo Sheng 已提交
188 189 190
    def test_predict(self):
        predict_test_util(self.place, "GRU")

F
Feiyu Chan 已提交
191 192 193 194
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
G
Guo Sheng 已提交
195
        self.test_predict()
F
Feiyu Chan 已提交
196 197 198 199 200 201 202


class TestLSTM(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestLSTM, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
203
        self.num_directions = 2 if direction in bidirectional_list else 1
204
        self.place = place
F
Feiyu Chan 已提交
205 206

    def setUp(self):
207 208 209 210
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
F
Feiyu Chan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        rnn1 = LSTM(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        rnn2 = paddle.nn.LSTM(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)
        prev_c = np.random.randn(2 * self.num_directions, 4, 32)

        y1, (h1, c1) = rnn1(x, (prev_h, prev_c))
        y2, (h2, c2) = rnn2(
232 233
            paddle.to_tensor(x),
            (paddle.to_tensor(prev_h), paddle.to_tensor(prev_c)))
F
Feiyu Chan 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, (h1, c1) = rnn1(x)
247
        y2, (h2, c2) = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, (h1, c1) = rnn1(x, sequence_length=sequence_length)

263
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
264 265 266
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
267
        y2, (h2, c2) = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
268 269
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
270 271 272 273 274

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

275
    def test_predict(self):
G
Guo Sheng 已提交
276
        predict_test_util(self.place, "LSTM")
277
        predict_test_util(self.place, "LSTM", False)
278

F
Feiyu Chan 已提交
279 280 281 282
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
283
        self.test_predict()
F
Feiyu Chan 已提交
284 285


286
def predict_test_util(place, mode, stop_gradient=True):
G
Guo Sheng 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    place = paddle.set_device(place)
    paddle.seed(123)
    np.random.seed(123)

    class Net(paddle.nn.Layer):
        def __init__(self):
            super(Net, self).__init__()
            self.rnn = getattr(paddle.nn, mode)(16,
                                                32,
                                                2,
                                                direction="bidirectional",
                                                dropout=0.1)

        def forward(self, input):
            return self.rnn(input)

    x = paddle.randn((4, 10, 16))
304
    x.stop_gradient = stop_gradient
G
Guo Sheng 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    seq_len = paddle.to_tensor(np.array([10, 6, 8, 5]))
    mask = sequence_mask(seq_len, maxlen=10, dtype=x.dtype)
    mask = paddle.unsqueeze(mask, [2])
    rnn = Net()
    y, _ = rnn(x)
    y = y * mask
    loss = paddle.mean(y)
    loss.backward()
    optimizer = paddle.optimizer.Adam(
        learning_rate=0.1, parameters=rnn.parameters())
    optimizer.step()
    rnn.eval()
    y, _ = rnn(x)
    # `jit.to_static` would include a train_program, eval mode might cause
    # some errors currently, such as dropout grad op gets `is_test == True`.
    rnn.train()

    rnn = paddle.jit.to_static(
323 324 325 326 327
        rnn, [paddle.static.InputSpec(shape=[None, None, 16], dtype=x.dtype)])
    temp_dir = tempfile.TemporaryDirectory()
    save_dirname = os.path.join(temp_dir.name, "./inference/%s_infer" % mode)

    paddle.jit.save(rnn, save_dirname)
G
Guo Sheng 已提交
328 329 330 331 332 333 334

    paddle.enable_static()

    new_scope = paddle.static.Scope()
    with paddle.static.scope_guard(new_scope):
        exe = paddle.static.Executor(place)
        [inference_program, feed_target_names,
335
         fetch_targets] = paddle.static.load_inference_model(save_dirname, exe)
G
Guo Sheng 已提交
336 337 338 339 340 341 342
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: x.numpy()},
                          fetch_list=fetch_targets)
        np.testing.assert_equal(
            y.numpy(), results[0])  # eval results equal predict results
    paddle.disable_static()

343 344
    temp_dir.cleanup()

G
Guo Sheng 已提交
345

F
Feiyu Chan 已提交
346 347 348 349
def load_tests(loader, tests, pattern):
    suite = unittest.TestSuite()
    devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \
        else ["cpu"]
350
    for direction in ["forward", "bidirectional", "bidirect"]:
F
Feiyu Chan 已提交
351 352 353 354 355
        for time_major in [True, False]:
            for device in devices:
                for test_class in [TestSimpleRNN, TestLSTM, TestGRU]:
                    suite.addTest(test_class(time_major, direction, device))
    return suite
356

357

358 359
if __name__ == '__main__':
    unittest.main()