test_stack_op.py 7.1 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
17
import paddle
18 19
import paddle.fluid as fluid
from op_test import OpTest
X
Xin Pan 已提交
20 21 22 23 24 25 26


class TestStackOpBase(OpTest):
    def initDefaultParameters(self):
        self.num_inputs = 4
        self.input_dim = (5, 6, 7)
        self.axis = 0
27
        self.dtype = 'float64'
X
Xin Pan 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    def initParameters(self):
        pass

    def get_x_names(self):
        x_names = []
        for i in range(self.num_inputs):
            x_names.append('x{}'.format(i))
        return x_names

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        self.op_type = 'stack'
        self.x = []
        for i in range(self.num_inputs):
            self.x.append(
                np.random.random(size=self.input_dim).astype(self.dtype))

        tmp = []
        x_names = self.get_x_names()
        for i in range(self.num_inputs):
            tmp.append((x_names[i], self.x[i]))

        self.inputs = {'X': tmp}
        self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
        self.attrs = {'axis': self.axis}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(self.get_x_names(), 'Y')


class TestStackOp1(TestStackOpBase):
    def initParameters(self):
        self.num_inputs = 16


class TestStackOp2(TestStackOpBase):
    def initParameters(self):
        self.num_inputs = 20


class TestStackOp3(TestStackOpBase):
    def initParameters(self):
        self.axis = -1


class TestStackOp4(TestStackOpBase):
    def initParameters(self):
        self.axis = -4


class TestStackOp5(TestStackOpBase):
    def initParameters(self):
        self.axis = 1


class TestStackOp6(TestStackOpBase):
    def initParameters(self):
        self.axis = 3


93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
class TestStackAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test stack api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
        self.set_program()

    def set_program(self):
        self.program = fluid.Program()
        with fluid.program_guard(self.program):
            input = fluid.layers.assign(self.x)
            tensor_array = fluid.layers.create_array(dtype='float32')
            zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")

            for i in range(self.iter_num):
                fluid.layers.array_write(input, zero + i, tensor_array)

            self.out_var = fluid.layers.stack(tensor_array, axis=self.axis)

    def test_case(self):
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
        self.assertTrue(
            np.array_equal(
                res[0], np.stack(
                    [self.x] * self.iter_num, axis=self.axis)))


129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
class TestTensorStackAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test stack api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
        self.set_program()

    def set_program(self):
        self.program = fluid.Program()
        with fluid.program_guard(self.program):
            input = fluid.layers.assign(self.x)
            tensor_array = fluid.layers.create_array(dtype='float32')
            zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")

            for i in range(self.iter_num):
                fluid.layers.array_write(input, zero + i, tensor_array)

            self.out_var = paddle.stack(tensor_array, axis=self.axis)

    def test_case(self):
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
        self.assertTrue(
            np.array_equal(
                res[0], np.stack(
                    [self.x] * self.iter_num, axis=self.axis)))


class API_test(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[1, 2], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1, 2], dtype='float64')
            data3 = fluid.layers.data('data3', shape=[1, 2], dtype='float64')
            result_stack = paddle.stack([data1, data2, data3], axis=0)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 2]).astype('float64')
            input2 = np.random.random([1, 2]).astype('float64')
            input3 = np.random.random([1, 2]).astype('float64')
            result, = exe.run(
                feed={"data1": input1,
                      "data2": input2,
                      "data3": input3},
                fetch_list=[result_stack])
            expected_result = np.stack([input1, input2, input3], axis=0)
            self.assertTrue(np.allclose(expected_result, result))

L
Leo Chen 已提交
185 186 187 188 189
    def test_single_tensor_error(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = paddle.rand([2, 3])
            self.assertRaises(TypeError, paddle.stack, x)

190 191 192 193 194 195 196 197 198 199

class API_DygraphTest(unittest.TestCase):
    def test_out(self):
        data1 = np.array([[1.0, 2.0]])
        data2 = np.array([[3.0, 4.0]])
        data3 = np.array([[5.0, 6.0]])
        with fluid.dygraph.guard():
            x1 = fluid.dygraph.to_variable(data1)
            x2 = fluid.dygraph.to_variable(data2)
            x3 = fluid.dygraph.to_variable(data3)
L
Leo Chen 已提交
200
            result = paddle.stack([x1, x2, x3])
201
            result_np = result.numpy()
L
Leo Chen 已提交
202
        expected_result = np.stack([data1, data2, data3])
203 204 205 206
        self.assertTrue(np.allclose(expected_result, result_np))

        with fluid.dygraph.guard():
            y1 = fluid.dygraph.to_variable(data1)
L
Leo Chen 已提交
207
            result = paddle.stack([y1], axis=0)
208
            result_np_2 = result.numpy()
L
Leo Chen 已提交
209
        expected_result_2 = np.stack([data1], axis=0)
210 211
        self.assertTrue(np.allclose(expected_result_2, result_np_2))

L
Leo Chen 已提交
212 213 214 215 216
    def test_single_tensor_error(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor([1, 2, 3])
            self.assertRaises(Exception, paddle.stack, x)

217

X
Xin Pan 已提交
218 219
if __name__ == '__main__':
    unittest.main()