auto_cast.py 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager, wrap_decorator
from paddle.fluid import core
import contextlib
J
Jiabin Yang 已提交
19
from paddle.fluid.framework import Variable, _non_static_mode, OpProtoHolder, Parameter, _dygraph_tracer, dygraph_only, set_flags, get_flags
20 21
import warnings
import copy
22 23 24 25
import functools
import paddle
import operator
import types
26

L
Leo Chen 已提交
27 28
AMP_LEVEL = core.AmpLevel

29
__all__ = ['amp_guard', 'amp_decorate']
30 31 32 33 34 35

# The set of ops that support fp16 calculation and are considered numerically-
# safe and performance-critical. These ops are always converted to fp16.
WHITE_LIST = {
    'conv2d',
    'matmul',
L
Leo Chen 已提交
36
    'matmul_v2',
37
    'mul',
C
cc 已提交
38 39
    'fake_quantize_dequantize_abs_max',
    'fake_quantize_dequantize_moving_average_abs_max',
40 41 42 43 44 45 46 47 48 49 50 51 52 53
}

# The set of ops that support fp16 calculation and are considered numerically-
# dangerous and whose effects may also be observed in downstream ops.
BLACK_LIST = {
    'exp',
    'square',
    'log',
    'mean',
    'sum',
    'cos_sim',
    'softmax',
    'softmax_with_cross_entropy',
    'sigmoid_cross_entropy_with_logits',
54
    'c_softmax_with_cross_entropy',
55 56
    'cross_entropy',
    'cross_entropy2',
57 58
    # default fp32 can avoid return inf when the sum value large than 65504
    'reduce_sum',
59 60 61 62 63 64
    # FP16 performance of grad op is worse than that of FP32. Use FP32 by default.
    'linear_interp_v2',
    'nearest_interp_v2',
    'bilinear_interp_v2',
    'bicubic_interp_v2',
    'trilinear_interp_v2',
65 66 67 68 69 70 71 72 73 74 75 76 77 78
}

AMP_RELATED_FLAGS = [
    'FLAGS_cudnn_exhaustive_search',
    'FLAGS_conv_workspace_size_limit',
    'FLAGS_cudnn_batchnorm_spatial_persistent',
]

AMP_RELATED_FLAGS_SETTING = {
    'FLAGS_cudnn_exhaustive_search': 1,
    'FLAGS_conv_workspace_size_limit': 1000,
    'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
}

79
PURE_FP16_WHITE_LIST = {''}
80
PURE_FP16_BLACK_LIST = {
81 82 83 84 85 86 87 88 89 90
    'lookup_table',
    'lookup_table_v2',
    'scatter',
    'scatter_grad',
    # FP16 performance of grad op is worse than that of FP32. Use FP32 by default.
    'linear_interp_v2',
    'nearest_interp_v2',
    'bilinear_interp_v2',
    'bicubic_interp_v2',
    'trilinear_interp_v2',
91
}
92

93
BF16_WHITE_LIST = {'conv2d', 'matmul_v2'}
94 95 96 97
BF16_BLACK_LIST = {''}

PURE_BF16_WHITE_LIST = {''}
PURE_BF16_BLACK_LIST = {''}
98

L
Leo Chen 已提交
99 100 101 102 103 104 105
_g_amp_state_ = None


def amp_state():
    global _g_amp_state_
    return _g_amp_state_

106 107 108

#NOTE(zhiqiu): similar as paddle.fluid.contrib.mixed_precision.fp16_lists.AutoMixedPrecisionLists._update_list
# The reason why not use AutoMixedPrecisionLists is that custom_black_varnames is not suitable for imperative mode.
109 110 111 112
def _update_list(custom_white_list,
                 custom_black_list,
                 level='O1',
                 dtype='float16'):
113 114 115
    """
    Update black and white list according to users' custom list.
    """
116 117 118 119 120 121 122
    if dtype == 'float16':
        if level == 'O1':
            _white_list = copy.copy(WHITE_LIST)
            _black_list = copy.copy(BLACK_LIST)
        else:
            _white_list = copy.copy(PURE_FP16_WHITE_LIST)
            _black_list = copy.copy(PURE_FP16_BLACK_LIST)
123
    else:
124 125 126 127 128 129
        if level == 'O1':
            _white_list = copy.copy(BF16_WHITE_LIST)
            _black_list = copy.copy(BF16_BLACK_LIST)
        else:
            _white_list = copy.copy(PURE_BF16_WHITE_LIST)
            _black_list = copy.copy(PURE_BF16_BLACK_LIST)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if custom_white_list and custom_black_list:
        for op_name in custom_white_list:
            if op_name in custom_black_list:
                raise ValueError("Custom white list overlap "
                                 "custom black list")
    if custom_white_list:
        for op_name in custom_white_list:
            if op_name in _black_list:
                _black_list.remove(op_name)
            _white_list.add(op_name)
    if custom_black_list:
        for op_name in custom_black_list:
            if op_name in _white_list:
                _white_list.remove(op_name)
            _black_list.add(op_name)
    return _white_list, _black_list


148 149 150 151 152 153
def _in_amp_guard():
    """
    Judge whether current code block is in `amp_guard` context.
    """
    tracer = _dygraph_tracer()
    if tracer:
L
Leo Chen 已提交
154
        if tracer._amp_level == core.AmpLevel.O1:
155 156 157
            return True
        else:
            return False
158 159 160 161
    else:
        return False


162 163 164 165 166
def _in_pure_fp16_guard():
    tracer = _dygraph_tracer()
    return tracer and tracer._amp_level == core.AmpLevel.O2


167 168 169 170 171 172 173 174 175 176 177 178 179 180
def _is_gpu_float16_supported():
    """
    Judge whether current gpu support float16 amp.
    """
    prop = paddle.device.cuda.get_device_capability()
    return prop[0] >= 7


def _is_gpu_bfloat16_supported():
    """
    Judge whether current gpu support bfloat16 amp.
    """
    prop = paddle.device.cuda.get_device_capability()
    cuda_version = paddle.version.cuda()
181
    if cuda_version is not None and cuda_version != 'False':
182 183 184 185 186 187
        cuda_version_check = int(cuda_version.split('.')[0]) >= 11
    else:
        cuda_version_check = False
    return prop[0] >= 8 and cuda_version_check


188
@dygraph_only
189
def pure_fp16_initialize(models):
190 191 192
    for idx in range(len(models)):
        for layer in models[idx].sublayers(include_self=True):
            layer._casted_by_pure_fp16 = True
193
            if (layer._dtype == 'float16') or isinstance(
194 195
                    layer, (paddle.nn.BatchNorm, paddle.nn.BatchNorm1D,
                            paddle.nn.BatchNorm2D, paddle.nn.BatchNorm3D,
196
                            paddle.nn.LayerNorm, paddle.nn.SyncBatchNorm)):
197
                continue
198 199 200 201
            if isinstance(layer, (paddle.incubate.nn.FusedFeedForward,
                                  paddle.incubate.nn.FusedMultiHeadAttention)):
                layer._amp_decorate(dtype='float16')
                continue
202 203 204
            layer._to_impl(dtype='float16',
                           include_sublayers=False,
                           floating_only=True)
205
    return models
206 207


208 209 210 211 212 213 214 215 216 217
@dygraph_only
def pure_bf16_initialize(models):
    for idx in range(len(models)):
        for layer in models[idx].sublayers(include_self=True):
            layer._to_impl(dtype='bfloat16',
                           include_sublayers=False,
                           floating_only=True)
    return models


218 219 220 221
def check_models(models):
    for model in models:
        if not isinstance(model, paddle.nn.Layer):
            raise RuntimeError(
222 223
                "Current train mode is pure fp16, models should be paddle.nn.Layer, but receive {}."
                .format(type(model)))
224 225 226 227
        if isinstance(model, paddle.DataParallel):
            raise RuntimeError(
                "For distributed AMP training, you should first use paddle.amp.decorate() to decotate origin model, and then call paddle.DataParallel get distributed model."
            )
228 229 230 231


def check_optimizers(optimizers):
    for optimizer in optimizers:
232 233 234
        if not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
235
            raise RuntimeError(
236 237
                "Current train mode is pure fp16, optimizers should be paddle.optimizer.Optimizer or paddle.fluid.optimizer.Optimizer, but receive {}."
                .format(type(optimizer)))
238 239


240 241
@signature_safe_contextmanager
@dygraph_only
242 243 244
def amp_guard(enable=True,
              custom_white_list=None,
              custom_black_list=None,
245 246
              level='O1',
              dtype='float16'):
247 248 249
    """
    :api_attr: imperative

250
    Create a context which enables auto-mixed-precision(AMP) of operators executed in dynamic graph mode.
251 252 253
    If enabled, the input data type (float32 or float16) of each operator is decided 
    by autocast algorithm for better performance. 
    
254 255
    Commonly, it is used together with `GradScaler` to achieve Auto-Mixed-Precision in 
    imperative mode. It is used together with `decorator` to achieve Pure fp16 in imperative mode.
256 257 258

    Args:
        enable(bool, optional): Enable auto-mixed-precision or not. Default is True.
259 260 261 262 263 264 265 266
        custom_white_list(set|list|tuple, optional): The custom white_list. It's the set of ops that support
             fp16 calculation and are considered numerically-safe and performance-critical. These ops 
             will be converted to fp16.
        custom_black_list(set|list|tuple, optional): The custom black_list. The set of ops that support fp16
             calculation and are considered numerically-dangerous and whose effects may also be 
             observed in downstream ops. These ops will not be converted to fp16.
        level(str, optional): Auto mixed precision level. Accepted values are "O1" and "O2": O1 represent mixed precision, the input data type of each operator will be casted by white_list and black_list; 
             O2 represent Pure fp16, all operators parameters and input data will be casted to fp16, except operators in black_list, don't support fp16 kernel and batchnorm. Default is O1(amp)
267
        dtype(str, optional): Whether to use 'float16' or 'bfloat16'. Default is 'float16'.
268

269 270 271 272 273 274
        
    Examples:

     .. code-block:: python

        import numpy as np
275
        import paddle
276 277

        data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
278 279 280 281
        with paddle.fluid.dygraph.guard():
            conv2d = paddle.fluid.dygraph.Conv2D(3, 2, 3)
            data = paddle.fluid.dygraph.to_variable(data)
            with paddle.fluid.dygraph.amp_guard():
282 283
                conv = conv2d(data)
                print(conv.dtype) # FP16
284
            with paddle.fluid.dygraph.amp_guard(enable=False):
285 286 287 288
                conv = conv2d(data)
                print(conv.dtype) # FP32

    """
L
Leo Chen 已提交
289 290 291 292 293
    amp_state = locals()
    global _g_amp_state_
    original_state = _g_amp_state_
    _g_amp_state_ = amp_state

294 295
    # check amp_level: O0-O2
    level = level.upper()
L
Leo Chen 已提交
296
    if not (level in ['O0', 'O1', 'O2']):
297
        raise ValueError(
298
            "level should be O0, O1 or O2. O0 represents fp32 train mode, O1 represents AMP train mode, O2 represents pure fp16/bf16 train mode."
299 300
        )

301 302 303 304 305 306
    # check amp_dtype: float16 or bfloat16
    dtype = dtype.lower()
    if not (dtype in ['float16', 'bfloat16']):
        raise ValueError("dtype should be 'float16' or 'bfloat16'.")

    # check tracer
307 308 309 310 311
    tracer = _dygraph_tracer()
    if not tracer:
        raise ValueError(
            "current_tracer is None, maybe it is not in imperative mode.")

312
    # check device_type:
Q
qipengh 已提交
313
    # NOTE: Now, amp only support gpu for float16 and bfloat16, xpu for float16, mlu for float16, npu for float16.
314
    # Maybe we will support cpu for bfloat16.
315 316 317 318 319
    if enable and not (tracer._expected_place.is_gpu_place()
                       or tracer._expected_place.is_xpu_place()
                       or tracer._expected_place.is_mlu_place()
                       or tracer._expected_place.is_npu_place()
                       or tracer._expected_place.is_custom_place()):
320
        warnings.warn(
321
            'amp_guard can only be enabled on CUDAPlace, XPUPlace, MLUPlace, NPUPlace, and CustomPlace, current place is %s, so it makes no effect.'
322 323
            % tracer._expected_place)
        enable = False
F
furnace 已提交
324 325 326 327
    # For npu:
    if tracer._expected_place.is_npu_place() and (dtype == 'bfloat16'):
        warnings.warn('NPUPlace only support float16 amp.')
        enable = False
328 329 330 331
    # For xpu:
    if tracer._expected_place.is_xpu_place() and (dtype == 'bfloat16'):
        warnings.warn('XPUPlace only support float16 amp.')
        enable = False
Q
qipengh 已提交
332 333 334 335
    # For mlu:
    if tracer._expected_place.is_mlu_place() and (dtype == 'bfloat16'):
        warnings.warn('MLUPlace only support float16 amp.')
        enable = False
336 337 338 339
    # For custom device:
    if tracer._expected_place.is_custom_place() and (dtype == 'bfloat16'):
        warnings.warn('CustomPlace only support float16 amp.')
        enable = False
340 341
    # For gpu float16: Compute Capability should >= 7.
    # For gpu bfloat16: Compute Capability should >= 8 & CUDA Version should >= 11.
Z
zhangbo9674 已提交
342
    if tracer._expected_place.is_gpu_place():
343 344
        if (dtype == 'float16') and not _is_gpu_float16_supported():
            prop = paddle.device.cuda.get_device_capability()
Z
zhangbo9674 已提交
345
            warnings.warn(
346
                "For float16, amp only support NVIDIA GPU with Compute Capability 7.0 or higher, current GPU is: %s, with Compute Capability: %d.%d."
Z
zhangbo9674 已提交
347
                % (paddle.device.cuda.get_device_name(), prop[0], prop[1]))
348 349 350 351 352 353 354 355 356
        elif (dtype == 'bfloat16') and not _is_gpu_bfloat16_supported():
            prop = paddle.device.cuda.get_device_capability()
            cuda_version = paddle.version.cuda()
            warnings.warn(
                "For bfloat16, amp only support NVIDIA GPU with Compute Capability 8.0 or higher and CUDA Version 11.0 or higher, current GPU is: %s, with Compute Capability: %d.%d, current CUDA Version is: %s."
                % (paddle.device.cuda.get_device_name(), prop[0], prop[1],
                   cuda_version))

    amp_dtype = dtype
Z
zhangbo9674 已提交
357

358
    if level == 'O1':
L
Leo Chen 已提交
359
        amp_level = AMP_LEVEL.O1
360 361 362 363 364 365 366
        if dtype == 'float16':
            _white_list = WHITE_LIST
            _black_list = BLACK_LIST
        elif dtype == 'bfloat16':
            _white_list = BF16_WHITE_LIST
            _black_list = BF16_BLACK_LIST

L
Leo Chen 已提交
367
    elif level == 'O2':
L
Leo Chen 已提交
368
        amp_level = AMP_LEVEL.O2
369 370 371 372 373 374
        if dtype == 'float16':
            _white_list = PURE_FP16_WHITE_LIST
            _black_list = PURE_FP16_BLACK_LIST
        elif dtype == 'bfloat16':
            _white_list = BF16_WHITE_LIST
            _black_list = BF16_BLACK_LIST
L
Leo Chen 已提交
375 376
    elif level == 'O0':
        amp_level = AMP_LEVEL.O0
377 378 379 380 381 382
        if dtype == 'float16':
            _white_list = WHITE_LIST
            _black_list = BLACK_LIST
        elif dtype == 'bfloat16':
            _white_list = BF16_WHITE_LIST
            _black_list = BF16_BLACK_LIST
383

384 385
    if custom_white_list or custom_black_list:
        _white_list, _black_list = _update_list(custom_white_list,
386
                                                custom_black_list, level, dtype)
387 388

    if not enable:
L
Leo Chen 已提交
389
        amp_level = AMP_LEVEL.O0
390
        amp_dtype = "float32"
391 392 393

    if tracer:
        # enable auto_cast
394 395 396
        original_amp_level = tracer._amp_level
        tracer._amp_level = amp_level

397 398 399 400 401 402 403 404 405 406 407 408
        # set amp op list
        original_white_list, original_black_list = tracer._get_amp_op_list()
        tracer._set_amp_op_list(_white_list, _black_list)

        # TODO(zhiqiu) set amp related flags automatically in this guard
        # Currently, if FLAGS_cudnn_batchnorm_spatial_persistent is set True in amp_guard,
        # batch_norm can run in fast mode, but batch_norm_grad can not if backward if not executed insise amp_guard.
        # So, users need to set related flags manually.

        # original_flags = get_flags(AMP_RELATED_FLAGS)
        # set_flags(AMP_RELATED_FLAGS_SETTING)

409 410 411 412
        # set amp dtype
        original_amp_dtype = tracer._amp_dtype
        tracer._amp_dtype = amp_dtype

413 414 415 416 417
    # restore status
    try:
        yield
    finally:
        if tracer:
L
Leo Chen 已提交
418
            _g_amp_state_ = original_state
419
            tracer._amp_level = original_amp_level
420 421
            tracer._set_amp_op_list(original_white_list, original_black_list)
            # set_flags(original_flags)
422
            tracer._amp_dtype = original_amp_dtype
423 424 425


class StateDictHook(object):
426

427 428 429 430 431 432
    def __init__(self, save_dtype):
        self._save_dtype = save_dtype

    def __call__(self, state_dict):
        for key in state_dict:
            param = state_dict[key]
433
            with paddle.fluid.dygraph.guard():
434 435 436 437
                if paddle.is_floating_point(param):
                    param_applied = paddle.cast(param, self._save_dtype)
                    param_applied.name = param.name
                    state_dict[key] = param_applied
438 439 440 441 442 443


@dygraph_only
def amp_decorate(models,
                 optimizers=None,
                 level='O1',
444
                 dtype='float16',
445 446 447 448 449 450 451 452 453 454 455 456
                 master_weight=None,
                 save_dtype=None):
    """
    Decorate models and optimizers for auto-mixed-precision. When level is O1(amp), the decorate will do nothing. 
    When level is O2(pure fp16), the decorate will cast all parameters of models to FP16, except BatchNorm and LayerNorm.
    
    Commonly, it is used together with `amp_guard` to achieve Pure fp16 in imperative mode.

    Args:
        models(Layer|list of Layer, optional): The defined models by user, models must be either a single model or a list of models. Default is None.
        optimizers(Optimizer|list of Optimizer, optional): The defined optimizers by user, optimizers must be either a single optimizer or a list of optimizers. Default is None.
        level(str, optional): Auto mixed precision level. Accepted values are "O1" and "O2": O1 represent mixed precision, the decorator will do nothing; 
457 458
             O2 represent Pure fp16/bf16, the decorator will cast all parameters of models to FP16/BF16, except BatchNorm and LayerNorm. Default is O1(amp)
        dtype(str, optional): Whether to use 'float16' or 'bfloat16'. Default is 'float16'.
459
        master_weight(bool, optinal): For level='O2', whether to use multi-precision during weight updating. If master_weight is None, in O2 level optimizer will use multi-precision. Default is None.
460
        save_dtype(float, optional): The save model parameter dtype when use `paddle.save` or `paddle.jit.save`,it should be float16, bfloat16, float32, float64 or None.
461 462 463 464 465 466 467 468 469 470 471
             The save_dtype will not change model parameters dtype, it just change the state_dict dtype. When save_dtype is None, the save dtype is same as model dtype. Default is None.

    Examples:

     .. code-block:: python   
        
        # required: gpu
        # Demo1: single model and optimizer:
        import paddle

        model = paddle.nn.Conv2D(3, 2, 3, bias_attr=False)
472
        optimizer = paddle.optimizer.SGD(parameters=model.parameters())
473

474
        model, optimizer = paddle.fluid.dygraph.amp_decorate(models=model, optimizers=optimizer, level='O2')
475 476 477

        data = paddle.rand([10, 3, 32, 32])

478
        with paddle.fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):
479 480 481 482 483 484 485 486
            output = model(data)
            print(output.dtype) # FP16

        # required: gpu
        # Demo2: multi models and optimizers:
        model2 = paddle.nn.Conv2D(3, 2, 3, bias_attr=False)
        optimizer2 = paddle.optimizer.Adam(parameters=model2.parameters())

487
        models, optimizers = paddle.fluid.dygraph.amp_decorate(models=[model, model2], optimizers=[optimizer, optimizer2], level='O2')
488 489 490

        data = paddle.rand([10, 3, 32, 32])

491
        with paddle.fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):
492 493 494 495
            output = models[0](data)
            output2 = models[1](data)
            print(output.dtype) # FP16
            print(output2.dtype) # FP16
496 497 498 499 500 501 502 503 504 505 506 507 508
        
        # required: gpu
        # Demo3: optimizers is None:
        model3 = paddle.nn.Conv2D(3, 2, 3, bias_attr=False)
        optimizer3 = paddle.optimizer.Adam(parameters=model2.parameters())

        model = paddle.fluid.dygraph.amp_decorate(models=model3, level='O2')

        data = paddle.rand([10, 3, 32, 32])

        with paddle.fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):
            output = model(data)
            print(output.dtype) # FP16
509 510 511 512 513 514 515
    """
    if not (level in ['O1', 'O2']):
        raise ValueError(
            "level should be O1 or O2, O1 represent AMP train mode, O2 represent Pure fp16 train mode."
        )

    if level == 'O1':
516 517 518 519
        if optimizers is None:
            return models
        else:
            return models, optimizers
520 521 522 523 524 525 526 527 528 529 530 531

    models_is_list = False
    if isinstance(models, paddle.nn.Layer):
        models_is_list = False
        models = [models]
        check_models(models)
    elif isinstance(models, list):
        check_models(models)
        models_is_list = True
    else:
        raise TypeError(
            "models must be either a single model or a list of models.")
532 533 534 535 536 537
    if dtype == 'float16':
        models = pure_fp16_initialize(models=models)
    elif dtype == 'bfloat16':
        models = pure_bf16_initialize(models=models)
    else:
        raise TypeError("dtype only support float16 or bfloat16.")
538

539 540 541
    if optimizers is not None:
        # check optimizers
        optimizers_is_list = False
542 543 544
        if isinstance(
                optimizers,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
545 546 547 548 549 550 551 552 553 554
            optimizers_is_list = False
            optimizers = [optimizers]
            check_optimizers(optimizers)
        elif isinstance(optimizers, list):
            check_optimizers(optimizers)
            optimizers_is_list = True
        else:
            raise TypeError(
                "optimizers must be either a single optimizer or a list of optimizers."
            )
555
        # supprot master_weight
556 557 558 559 560 561
        for idx_opt in range(len(optimizers)):
            if hasattr(optimizers[idx_opt], '_multi_precision'):
                if master_weight is False:
                    optimizers[idx_opt]._multi_precision = False
                else:
                    optimizers[idx_opt]._multi_precision = True
562 563

    if save_dtype is not None:
564
        if not (save_dtype in ['float16', 'bfloat16', 'float32', 'float64']):
565 566 567 568 569 570 571 572
            raise ValueError(
                "save_dtype can only be float16 float32 or float64, but your input save_dtype is %s."
                % save_dtype)
        for idx in range(len(models)):
            for layer in models[idx].sublayers(include_self=True):
                layer.register_state_dict_hook(StateDictHook(save_dtype))

    if models_is_list:
573 574 575 576 577
        if optimizers is not None:
            if optimizers_is_list:
                return models, optimizers
            else:
                return models, optimizers[0]
578
        else:
579
            return models
580
    else:
581 582 583 584 585
        if optimizers is not None:
            if optimizers_is_list:
                return models[0], optimizers
            else:
                return models[0], optimizers[0]
586
        else:
587
            return models[0]