custom_operator.cc 35.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

28
#include "paddle/fluid/extension/include/ext_tensor.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/custom_tensor_utils.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"

namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
      func, platform::errors::NotFound(
                "Failed to load dynamic operator library, error message(%s).",
                errorno));
  return func;
}

inline bool IsGradVar(const std::string& var_name) {
  std::string suffix = kGradVarSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

64 65 66 67 68
inline bool IsDuplicableVar(const std::string& var_name) {
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

69 70 71 72 73 74 75 76 77 78
inline std::string NoGrad(const std::string& var_name) {
  std::string suffix = kGradVarSuffix;
  return var_name.substr(0, var_name.size() - kGradVarSuffixSize);
}

inline bool IsMemberOf(const std::vector<std::string>& vec,
                       const std::string& name) {
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
std::vector<std::string> ParseAttrStr(const std::string& attr) {
  auto split_pos = attr.find_first_of(":");
  PADDLE_ENFORCE_NE(split_pos, std::string::npos,
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

  VLOG(1) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];

  return rlt;
}

97 98 99 100 101 102 103 104
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
static void RunKernelFunc(const framework::ExecutionContext& ctx,
                          const paddle::KernelFunc& func,
                          const std::vector<std::string>& inputs,
105 106
                          const std::vector<std::string>& outputs,
                          const std::vector<std::string>& attrs) {
107 108
  VLOG(1) << "Custom Operator: Start run KernelFunc.";
  std::vector<paddle::Tensor> custom_ins;
109
  std::vector<std::vector<paddle::Tensor>> custom_vec_ins;
110 111
  for (auto& in_name : inputs) {
    VLOG(1) << "Custom Operator: input name - " << in_name;
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    if (detail::IsDuplicableVar(in_name)) {
      // return const std::vector<const Tensor*>
      auto vec_x = ctx.MultiInput<Tensor>(in_name);
      PADDLE_ENFORCE_NE(vec_x.empty(), true,
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
      std::vector<paddle::Tensor> custom_vec_in;
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
            x, platform::errors::NotFound(
                   "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                   i, in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
                              i, in_name));
        auto custom_t = paddle::Tensor(
            CustomTensorUtils::ConvertInnerPlaceToEnumPlace(x->place()));
        CustomTensorUtils::ShareDataFrom(static_cast<const void*>(x), custom_t);
        CustomTensorUtils::SetTensorCurrentStream(&custom_t, ctx.GetPlace());
        custom_vec_in.emplace_back(custom_t);
      }
      custom_vec_ins.emplace_back(custom_vec_in);
    } else {
      auto* x = ctx.Input<Tensor>(in_name);
      PADDLE_ENFORCE_NOT_NULL(x, platform::errors::NotFound(
                                     "Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
      auto custom_in = paddle::Tensor(
          CustomTensorUtils::ConvertInnerPlaceToEnumPlace(x->place()));
      CustomTensorUtils::ShareDataFrom(static_cast<const void*>(x), custom_in);
      CustomTensorUtils::SetTensorCurrentStream(&custom_in, ctx.GetPlace());
      custom_ins.emplace_back(custom_in);
    }
150 151
  }

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  std::vector<boost::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx.Attr<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx.Attr<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx.Attr<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx.Attr<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx.Attr<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx.Attr<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(ctx.Attr<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      custom_attrs.emplace_back(ctx.Attr<std::vector<int64_t>>(attr_name));
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(ctx.Attr<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
180
          "`std::vector<float>`, `std::vector<int64_t>`, "
181 182 183 184 185
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
186

187
  VLOG(1) << "Custom Operator: Run ComputeFunc.";
188
  try {
189
    auto outs = func(custom_ins, custom_vec_ins, custom_attrs);
190

191 192
    VLOG(1) << "Custom Operator: Share outputs into ExecutionContext.";
    for (size_t i = 0; i < outputs.size(); ++i) {
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
      auto out_name = outputs[i];
      if (detail::IsDuplicableVar(out_name)) {
        PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                       platform::errors::PreconditionNotMet(
                           "If custom operator's outputs contains `paddle::Vec("
                           ")` type, "
                           "it only can hold one output."));
        auto vec_true_outs = ctx.MultiOutput<Tensor>(out_name);
        PADDLE_ENFORCE_EQ(
            vec_true_outs.size(), outs.size(),
            platform::errors::InvalidArgument(
                "The number of element in custom operator outputs is wrong, "
                "expected contains %d Tensors, but actually contains %d "
                "Tensors.",
                vec_true_outs.size(), outs.size()));
        for (size_t j = 0; j < vec_true_outs.size(); ++j) {
          CustomTensorUtils::ShareDataTo(outs.at(j), vec_true_outs.at(j));
        }
      } else {
        auto* true_out = ctx.Output<Tensor>(out_name);
        CustomTensorUtils::ShareDataTo(outs.at(i), true_out);
      }
215 216 217 218 219 220 221 222
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
        "Custom operator raises an unknown exception in rumtime."));
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  }
}

//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
    VLOG(1) << "Custom Operator: Dummy infer shape of custom operator.";
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    return framework::OpKernelType(proto::VarType::RAW, ctx.GetPlace());
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) {
    return OpKernelType(expected_kernel_type.data_type_,
                        expected_kernel_type.place_, tensor.layout());
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
275 276 277 278 279 280
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
281 282
    }
    for (auto& out_name : outputs_) {
283 284 285 286 287 288
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
289
    }
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
329
            "`std::vector<float>`, `std::vector<int64_t>`, "
330 331 332 333 334
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    AddComment(R"DOC(
Custom Operator.

According to the Tensor operation function implemented by the user 
independently of the framework, it is encapsulated into a framework 
operator to adapt to various execution scenarios such as dynamic graph, 
mode static graph mode, and inference mode.

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
      const OpDesc& fwd_op, const std::unordered_set<std::string>& no_grad_set,
      std::unordered_map<std::string, std::string>* grad_to_var,
      const std::vector<BlockDesc*>& grad_block, const std::string& name,
      const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs)
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
        outputs_(outputs) {}

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
      VLOG(1) << "Custom Operator: GradOpDescMaker - input: " << in_name;
      if (!detail::IsGradVar(in_name)) {
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
      VLOG(1) << "Custom Operator: GradOpDescMaker - output: " << out_name;
395 396 397 398 399 400 401
      if (detail::IsDuplicableVar(out_name)) {
        grad_op->SetOutput(out_name,
                           this->InputGrad(detail::NoGrad(out_name),
                                           /*drop_empty_grad=*/false));
      } else {
        grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(out_name)));
      }
402
    }
403
    grad_op->SetAttrMap(this->Attrs());
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
      const std::string& name, const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs)
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
        outputs_(outputs) {}

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
      VLOG(1) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
      if (!detail::IsGradVar(in_name)) {
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
      VLOG(1) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
      grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(out_name)));
    }
463
    grad_op->SetAttrMap(this->Attrs());
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
};

//////////// Operator and Kernel Register //////////////

void RegisterOperatorKernelWithPlace(const std::string& name,
                                     const paddle::KernelFunc& kernel_func,
                                     const proto::VarType::Type type,
                                     const PlaceType& place,
                                     const std::vector<std::string>& inputs,
479 480
                                     const std::vector<std::string>& outputs,
                                     const std::vector<std::string>& attrs) {
481 482 483 484
  OpKernelType key(type,
                   CustomTensorUtils::ConvertEnumPlaceToInnerPlace(place));
  VLOG(1) << "Custom Operator: op kernel key: " << key;
  OperatorWithKernel::AllOpKernels()[name][key] =
485 486
      [kernel_func, inputs, outputs,
       attrs](const framework::ExecutionContext& ctx) {
487
        VLOG(1) << "Custom Operator: run custom kernel func in lambda.";
488
        RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs);
489 490 491 492 493 494
      };
}

void RegisterOperatorKernel(const std::string& name,
                            const paddle::KernelFunc& kernel_func,
                            const std::vector<std::string>& inputs,
495 496
                            const std::vector<std::string>& outputs,
                            const std::vector<std::string>& attrs) {
497 498 499 500 501 502 503
  VLOG(1) << "Custom Operator: op name in kernel: " << name;
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
  RegisterOperatorKernelWithPlace(name, kernel_func, proto::VarType::RAW,
504 505
                                  PlaceType::kCPU, inputs, outputs, attrs);
#ifdef PADDLE_WITH_CUDA
506
  RegisterOperatorKernelWithPlace(name, kernel_func, proto::VarType::RAW,
507 508
                                  PlaceType::kGPU, inputs, outputs, attrs);
#endif
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
}

void RegisterOperatorWithMetaInfo(
    const std::vector<OpMetaInfo>& op_meta_infos) {
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

  VLOG(1) << "Custom Operator: forward, op name: " << op_name;
  VLOG(1) << "Custom Operator: forward, op inputs: "
          << string::join_strings(op_inputs, ',');
  VLOG(1) << "Custom Operator: forward, op outputs: "
          << string::join_strings(op_outputs, ',');
531 532
  VLOG(1) << "Custom Operator: forward, op attrs: "
          << string::join_strings(op_attrs, ',');
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

  // Op
  info.creator_ = [](const std::string& op_name, const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
      info.proto_->IsInitialized(), true,
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
          op_name, info.proto_->InitializationErrorString()));

  // InferShape
555 556 557 558 559 560 561 562
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
563 564 565
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
566 567 568 569 570 571 572
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
573 574 575
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
576 577 578 579 580 581 582
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

      VLOG(1) << "Custom Operator: Default InferShape - share ddim.";
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
583
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs,
584 585
                         infer_shape_func](InferShapeContext* ctx) {
      std::vector<std::vector<int64_t>> input_shapes;
586
      std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;
587 588 589

      VLOG(1) << "Custom Operator: InferShape - get input ddim.";
      for (auto& in_name : op_inputs) {
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
        if (detail::IsDuplicableVar(in_name)) {
          OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
          auto vec_ddim = ctx->GetInputsDim(in_name);
          std::vector<std::vector<int64_t>> vec_shape;
          vec_shape.reserve(vec_ddim.size());
          std::transform(vec_ddim.begin(), vec_ddim.end(),
                         std::back_inserter(vec_shape),
                         [&](const DDim& ddim) -> std::vector<int64_t> {
                           return framework::vectorize(ddim);
                         });
          vec_input_shapes.emplace_back(vec_shape);
        } else {
          OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
          auto ddim = ctx->GetInputDim(in_name);
          input_shapes.emplace_back(framework::vectorize(ddim));
        }
606
      }
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
      std::vector<boost::any> custom_attrs;
      for (auto& attr_str : op_attrs) {
        auto attr_name_and_type = detail::ParseAttrStr(attr_str);
        auto attr_name = attr_name_and_type[0];
        auto attr_type_str = attr_name_and_type[1];
        if (attr_type_str == "bool") {
          custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
        } else if (attr_type_str == "int") {
          custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
        } else if (attr_type_str == "float") {
          custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
        } else if (attr_type_str == "int64_t") {
          custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
        } else if (attr_type_str == "std::string") {
          custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
        } else if (attr_type_str == "std::vector<int>") {
          custom_attrs.emplace_back(
              ctx->Attrs().Get<std::vector<int>>(attr_name));
        } else if (attr_type_str == "std::vector<float>") {
          custom_attrs.emplace_back(
              ctx->Attrs().Get<std::vector<float>>(attr_name));
        } else if (attr_type_str == "std::vector<int64_t>") {
          // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
          // attr type, because the input type is std::vector<int64_t>, only
          // can use one rule to parse std::vector<int64_t> parameter
          continue;
        } else if (attr_type_str == "std::vector<std::string>") {
          custom_attrs.emplace_back(
              ctx->Attrs().Get<std::vector<std::string>>(attr_name));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported `%s` type value as custom attribute now. "
              "Supported data types include `bool`, `int`, `float`, "
              "`int64_t`, `std::string`, `std::vector<int>`, "
              "`std::vector<float>`, `std::vector<std::string>`, "
              "Please check whether the attribute data type and "
              "data type string are matched.",
              attr_type_str));
        }
      }

649
      VLOG(1) << "Custom Operator: InferShape - calc output ddim.";
650 651
      auto output_shapes =
          infer_shape_func(input_shapes, vec_input_shapes, custom_attrs);
652

653 654
      VLOG(1) << "Custom Operator: InferShape - set output ddim.";
      for (size_t i = 0; i < op_outputs.size(); ++i) {
655 656 657 658 659 660 661 662 663 664 665 666 667
        auto out_name = op_outputs[i];
        if (detail::IsDuplicableVar(out_name)) {
          std::vector<DDim> vec_ddim;
          vec_ddim.reserve(output_shapes.size());
          std::transform(output_shapes.begin(), output_shapes.end(),
                         std::back_inserter(vec_ddim),
                         [&](const std::vector<int64_t>& shape) -> DDim {
                           return framework::make_ddim(shape);
                         });
          ctx->SetOutputsDim(out_name, vec_ddim);
        } else {
          ctx->SetOutputDim(out_name, framework::make_ddim(output_shapes[i]));
        }
668 669 670
      }
    };
  }
671 672

  // Infer Dtype
673 674 675 676 677 678 679 680
  if (infer_dtype_func == nullptr) {
    // use defalut InferDtype
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
681 682 683
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
684 685 686 687 688 689 690
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
691 692 693
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
694 695 696 697 698 699 700 701 702 703 704
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

      VLOG(1) << "Custom Operator: InferDtype - share dtype.";
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
    info.infer_var_type_ = [op_inputs, op_outputs,
                            infer_dtype_func](InferVarTypeContext* ctx) {
      std::vector<DataType> input_dtypes;
705
      std::vector<std::vector<DataType>> vec_input_dtypes;
706 707 708

      VLOG(1) << "Custom Operator: InferDtype - get input dtype.";
      for (auto& in_name : op_inputs) {
709 710 711 712 713 714 715 716 717 718 719 720 721
        if (detail::IsDuplicableVar(in_name)) {
          std::vector<DataType> vec_custom_dtype;
          for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
            auto dtype = ctx->GetInputDataType(in_name, i);
            vec_custom_dtype.emplace_back(
                CustomTensorUtils::ConvertInnerDTypeToEnumDType(dtype));
          }
          vec_input_dtypes.emplace_back(vec_custom_dtype);
        } else {
          auto dtype = ctx->GetInputDataType(in_name);
          input_dtypes.emplace_back(
              CustomTensorUtils::ConvertInnerDTypeToEnumDType(dtype));
        }
722
      }
723

724
      VLOG(1) << "Custom Operator: InferDtype - infer output dtype.";
725
      auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);
726

727 728
      VLOG(1) << "Custom Operator: InferDtype - set output dtype.";
      for (size_t i = 0; i < op_outputs.size(); ++i) {
729 730 731 732 733 734 735 736 737 738 739 740
        auto out_name = op_outputs[i];
        if (detail::IsDuplicableVar(out_name)) {
          for (size_t j = 0; j < output_dtypes.size(); ++j) {
            auto dtype = CustomTensorUtils::ConvertEnumDTypeToInnerDType(
                output_dtypes[i]);
            ctx->SetOutputDataType(out_name, dtype, j);
          }
        } else {
          ctx->SetOutputDataType(
              out_name, CustomTensorUtils::ConvertEnumDTypeToInnerDType(
                            output_dtypes[i]));
        }
741 742 743
      }
    };
  }
744 745

  // Kernel func
746
  RegisterOperatorKernel(op_name, kernel_fn, op_inputs, op_outputs, op_attrs);
747 748 749 750 751 752 753 754 755

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
756
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);

    VLOG(1) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(1) << "Custom Operator: backward, op inputs: "
            << string::join_strings(grad_op_inputs, ',');
    VLOG(1) << "Custom Operator: backward, op outputs: "
            << string::join_strings(grad_op_outputs, ',');

    // GradOpDescMaker
    info.grad_op_maker_ = [grad_op_name, grad_op_inputs, grad_op_outputs](
        const OpDesc& fwd_op,
        const std::unordered_set<std::string>& no_grad_set,
        std::unordered_map<std::string, std::string>* grad_to_var,
        const std::vector<BlockDesc*>& grad_block) {
      CustomGradOpMaker<paddle::framework::OpDesc> maker(
          fwd_op, no_grad_set, grad_to_var, grad_block, grad_op_name,
          grad_op_inputs, grad_op_outputs);
      return maker();
    };

    // GradOpBaseMaker
    info.dygraph_grad_op_maker_ = [grad_op_name, grad_op_inputs,
                                   grad_op_outputs](
        const std::string& type,
        const imperative::NameVarBaseMap& var_base_map_in,
        const imperative::NameVarBaseMap& var_base_map_out,
        const framework::AttributeMap& attrs,
        const std::map<std::string, std::string>& inplace_map) {
      CustomGradOpMaker<paddle::imperative::OpBase> maker(
          type, var_base_map_in, var_base_map_out, attrs, inplace_map,
          grad_op_name, grad_op_inputs, grad_op_outputs);
      return maker();
    };

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
    grad_info.creator_ = [](
        const std::string& type, const VariableNameMap& inputs,
        const VariableNameMap& outputs, const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };

801 802 803 804 805 806 807 808 809 810 811 812
    // Grad InferShape
    grad_info.infer_shape_ = [grad_op_inputs,
                              grad_op_outputs](InferShapeContext* ctx) {
      // 1. if forward input exists, gradient's shape is same with forward input
      // default
      //    [Suitable for most situations]
      // 2. if forward input not exists, and only contains one grad input and
      // output,
      //    use grad input shape as grad output shape
      //    [Suitable for the situation that forward input is not used as
      //    backward input]
      // TODO(chenweihang): support set grad op infershape func if needed
813
      for (auto& out_name : grad_op_outputs) {
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
        auto fwd_name = detail::NoGrad(out_name);
        if (detail::IsDuplicableVar(fwd_name)) {
          // Duplicable forward var must as backward input
          ctx->ShareDim(fwd_name, out_name);
        } else {
          if (ctx->HasInput(fwd_name)) {
            ctx->ShareDim(fwd_name, out_name);
          } else {
            PADDLE_ENFORCE_EQ(
                grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                true,
                platform::errors::Unavailable(
                    "Custom grad operator infershape error. "
                    "If a custom grad operator contains only one input and "
                    "only one output, the input shape will be directly set to "
                    "the output shape. Otherwise, Please set the forward input "
                    "as the grad operator's input."));
            ctx->ShareDim(grad_op_inputs[0], out_name);
          }
        }
834 835 836 837 838
      }
    };

    // Kernel func
    RegisterOperatorKernel(grad_op_name, grad_kernel_fn, grad_op_inputs,
839
                           grad_op_outputs, grad_op_attrs);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
    const paddle::OpMetaInfoMap& op_meta_info_map) {
  auto& meta_info_map = op_meta_info_map.GetMap();
  VLOG(1) << "Custom Operator: size of op meta info map - "
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
    VLOG(1) << "Custom Operator: pair first -> op name: " << pair.first;
    RegisterOperatorWithMetaInfo(pair.second);
  }
}

////////////////////// User APIs ///////////////////////

// load op api
void LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);

  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();

  RegisterOperatorWithMetaInfoMap(op_meta_info_map);
}

}  // namespace framework
}  // namespace paddle