fake_quantize_op.h 6.6 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/transform.h"

namespace paddle {
namespace operators {

using platform::Transform;

template <typename DeviceContext, typename T>
class FakeQuantizeKernel : public framework::OpKernel<T> {
 public:
  T FindAbsMax(framework::Tensor* in, int n) const {
    T* p = in->mutable_data<T>(platform::CPUPlace());
    T abs_max = (T)0.00000001;
    for (int i = 0; i < n; i++) {
      T tmp = fabs(p[i]);
      if (tmp > abs_max) abs_max = tmp;
    }
    return T(abs_max);
  }
  T FindRangeAbsMax(framework::Tensor* scale_list, framework::Tensor* out_scale,
                    const T& cur_scale, int window_size,
                    int current_iter) const {
    T* sl = scale_list->mutable_data<T>(platform::CPUPlace());
    T remove_tmp = sl[current_iter];
    sl[current_iter] = cur_scale;
    T& max_scale = out_scale->mutable_data<T>(platform::CPUPlace())[0];
    if (max_scale < cur_scale) {
      max_scale = cur_scale;
    } else if (fabs(remove_tmp - max_scale) < 1e-6) {
      int size = (current_iter > window_size) ? window_size : current_iter;
      max_scale = T(FindAbsMax(scale_list, size));
    }
    return max_scale;
  }

  T FindMovingAverageAbsMmax(framework::Tensor* in_scale,
                             framework::Tensor* out_scale,
                             const T& cur_scale) const {
    T* ins = in_scale->mutable_data<T>(platform::CPUPlace());
    T* outs = out_scale->mutable_data<T>(platform::CPUPlace());
    outs[0] = 0.9 * cur_scale + 0.1 * ins[0];
    return T(outs[0]);
  }

  virtual void Compute(const framework::ExecutionContext& context) const {
    auto* tensor = context.Output<framework::Tensor>("Out");
    auto* in = context.Input<framework::Tensor>("X");
    const bool is_test = context.Attr<bool>("is_test");
    tensor->mutable_data<T>(in->place());

    auto* oms_tensor = context.Output<framework::Tensor>("OutMovingScale");
    oms_tensor->mutable_data<T>(in->place());

    auto quantize_type =
        static_cast<std::string>(context.Attr<std::string>("quantize_type"));
    if (quantize_type == std::string("range_abs_max")) {
      auto* oss_tensor = context.Output<framework::Tensor>("OutScales");
      oss_tensor->mutable_data<T>(
          context.Input<framework::Tensor>("InScales")->place());
      auto* oci_tensor = context.Output<framework::Tensor>("OutCurrentIter");
      oci_tensor->mutable_data<T>(
          context.Input<framework::Tensor>("InCurrentIter")->place());
    }

    T scale = static_cast<T>(1);
    int window_size = context.Attr<int>("window_size");
    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;

    auto& dev =
        *context.template device_context<DeviceContext>().eigen_device();
    auto raw_in = framework::EigenVector<T>::Flatten(*in);
    if (quantize_type == std::string("abs_max")) {
      auto* saving_scale = context.Output<framework::Tensor>("OutMovingScale");
      auto scale_out = framework::EigenVector<T>::Flatten(*saving_scale);
      scale_out.device(dev) = raw_in.abs().maximum();
      scale = scale_out(0);

      auto& device_ctx = context.template device_context<DeviceContext>();
      auto* scale_list = context.Output<framework::Tensor>("OutScales");
      math::SetConstant<DeviceContext, T> scalar;
      scale_list->mutable_data<T>(context.GetPlace());
      scalar(device_ctx, scale_list, static_cast<T>(0));
      auto* iter = context.Output<framework::Tensor>("OutCurrentIter");
      iter->mutable_data<T>(context.GetPlace());
      scalar(device_ctx, iter, static_cast<T>(0));
    } else if (quantize_type == std::string("range_abs_max")) {
      auto* moving_scale = context.Input<framework::Tensor>("InMovingScale");
      if (is_test) {
        scale = moving_scale->data<T>()[0];
      } else {
        auto* it = context.Input<framework::Tensor>("InCurrentIter");
        auto* iter = context.Output<framework::Tensor>("OutCurrentIter");
        const int* last_iter = it->data<int>();
        int* current_iter = iter->mutable_data<int>(platform::CPUPlace());
        auto* scale_list = context.Output<framework::Tensor>("OutScales");
        auto* saving_scale =
            context.Output<framework::Tensor>("OutMovingScale");
        auto scale_out = framework::EigenVector<T>::Flatten(*saving_scale);
        scale_out.device(dev) = raw_in.abs().maximum();
        scale = saving_scale->mutable_data<T>(platform::CPUPlace())[0];
        scale = FindRangeAbsMax(scale_list, saving_scale, scale, window_size,
                                current_iter[0]);
        saving_scale->mutable_data<T>(platform::CPUPlace())[0] = scale;
        (*current_iter) = (*last_iter) + 1;
      }
    } else if (quantize_type == std::string("moving_average_abs_max")) {
      auto* moving_scale = context.Input<framework::Tensor>("InMovingScale");
      if (is_test) {
        scale = moving_scale->data<T>()[0];
      } else {
        auto* saving_scale =
            context.Output<framework::Tensor>("OutMovingScale");
        auto scale_out = framework::EigenVector<T>::Flatten(*saving_scale);
        scale_out.device(dev) = raw_in.abs().maximum();
        scale = saving_scale->mutable_data<T>(platform::CPUPlace())[0];
        scale = FindMovingAverageAbsMmax(
            const_cast<framework::Tensor*>(moving_scale), saving_scale, scale);
        saving_scale->mutable_data<T>(platform::CPUPlace())[0] = scale;
      }
    }

    Transform<DeviceContext> trans;
    trans(context.template device_context<DeviceContext>(), in->data<T>(),
          in->data<T>() + in->numel(), tensor->mutable_data<T>(in->place()),
          ClipFunctor<T>(-scale, scale));
    auto eigen_out = framework::EigenVector<T>::Flatten(*tensor);
    auto eigen_in = framework::EigenVector<T>::Flatten(*tensor);
    eigen_out.device(dev) = (bin_cnt / scale * eigen_in).round();
  }
};

}  // namespace operators
}  // namespace paddle